Town of Thompson's Station Municipal Planning Commission Meeting Agenda October 25, 2018

Meeting Called To Order

Pledge Of Allegiance

Minutes-

Consideration Of The Minutes Of The September 25, 2018 Meeting

Documents:

09252018 MINUTES_.PDF

Public Comments-

New Business:

1. Preliminary Plat For The Subdivision Of 91 Lots For Littlebury Located Along The East Side Of Pantall Road (PP 2018-006)

Documents:

ITEM 1 LITTLEBURY STAFF REPORT.PDF
ITEM 1 LITTLEBURY PLAT PACKET.PDF
ITEM 1 LITTLEBURY REVISED TRAFFIC STUDY DATED SEPT 2018.PDF
ITEM 1 BARGE TRAFFIC STUDY REVIEW.PDF
ITEM 1 BAUGH ROAD EXHIBIT.PDF

2. Preliminary Plat For The Subdivision Of 27 Lots For Phase 2A Of The "Town Center" In The Tollgate Village Community (PP 2018-008)

Documents:

ITEM 2 TV 2A PRELIM PLAT STAFF REPORT.PDF
ITEM 2 TV 2A PRELIMINARY PLAT.PDF
ITEMS 2 AND 3 TOLLGATE VILLAGE TRAFFIC STUDY.PDF
TIS RESPONSE - TOLLGATE VILLAGE OCTOBER 2018.PDF

3. Site Plan For The Development Of Phase 2A (Townhomes, Condominiums, Live Work And Mixed Use) Within The Tollgate Village Community (SP 2018-007)

Documents:

ITEM 3 TV 2A STAFF REPORT.PDF ITEM 3 SITE PLAN PACKET.PDF ITEM 3 SEWER TAP ANALYSIS.PDF

4. Site Plan Amendment To The Specific Plan For Graystone Quarry To Add A Ticket Booth, Restrooms, Concession Buildings And A Storage Building Located At 4520 Graystone Quarry Lane (SP 2018-005)

Documents:

ITEM 4 GRAYSTONE STAFF REPORT.PDF ITEM 4 SITE PLAN PACKET.PDF ITEM 4 SITE PLAN PACKET 2.PDF

5. Final Plat For The Dedication Of An Extension To Branford Place To Provide Access To An Existing Lot (FP 2018-019)

Documents:

ITEM 5 TV BRANFORD STAFF REPORT.PDF ITEM 5 BRANFORD PLAT.PDF

6. Request To Waive The Requirement For A 20-Foot Easement As Required In Section 3.10.1 Of Article 3 – Subdivision Regulations Within The Land Development Ordinance (FP 2018-018)

Documents:

ITEM 6 STAFF MEMO FP DEVIATION REQUEST.PDF ITEM 6 WES JUSTIFICATION LETTER.PDF ITEM 6 FC 1158-1159 FINAL PLAT.PDF

Adjourn

This meeting will be held at 7:00 p.m. at the Thompson's Station Community Center 1555 Thompson's Station Rd West

Minutes of the Meeting

of the Municipal Planning Commission of the Town of Thompson 's Station, Tennessee September 25, 2018

Call to Order:

The meeting of the Municipal Planning Commission of the Town of Thompson's Station was called to order at 7:00 p.m. on the 28nd day of August 2018 at the Thompson's Station Community Center with the required quorum. Members and staff in attendance were: Chairman Jack Elder; Vice Chairman Mike Roberts; Commissioner Shaun Alexander; Alderman Ben Dilks; Commissioner Trent Harris; Commissioner Tara Rumpler; Commissioner Bob Whitmer; Town Planner Wendy Deats, Town Clerk Jennifer Jones and Town Attorney Todd Moore.

Pledge of Allegiance.

Minutes:

The minutes of the August 28, 2018 meeting were previously submitted.

Commissioner Whitmer made a motion to approve of the August 28, 2018 meeting minutes. The motion was seconded and carried unanimously.

Public Comment:

Aaron Holliday – Grove Park Construction – Supportive of the garage provision amendment and would like consideration to add D1 to the LDO Amendment.

George Dean – Representative of Crescent Homes – Supportive of garage LDO amendment and would like to see it considered for approval.

Kevin Sturgill – Lennar Homes - Supportive of garage LDO amendment and would like to see it considered for approval.

Planner Report:

Mrs. Deats informed the Commission that the October 23rd Planning Commission meeting has been rescheduled to October 25th, 2018.

Avenue Downs has sent in a withdrawal request in order for the Town to complete the wastewater study.

Unfinished Business:

1. Final Plat for the creation of 70 single-family lots and five (5) open space lots within section 17 of Tollgate Village (FP 2018-013).

Mrs. Deats reviewed her report and Based on the project's consistency with the preliminary plat for section 17 and with the incorporation of the recommended contingencies, the plat will comply with the Land Development Ordinance, therefore, Staff recommends the Planning Commission approve the final plat with the following contingencies:

Page 2

- 1. Prior to the recordation of the final plat, a plat identifying all remaining open space shall be approved by the Town.
- 2. Prior to recordation of the final plat, all sewer improvements shall be completed and shall pass any necessary testing. These improvements shall include a driveway from Wareham Drive to the pump station in addition to a water spigot at the pump station.
- 3. Prior to recordation of the final plat, a surety shall be submitted to the Town in the amount of \$380,000 for roadways, drainage and erosion control with automatic renewal.
- 4. Prior to recordation of the final plat, a surety shall be submitted to the Town in the amount of \$280,000 for sewer with automatic renewal.
- 5. All tree replacements shall be installed in accordance with the approved replacement plan for phase 17.
- 6. Prior to recordation of the final plat, a surety shall be submitted to the Town in the amount of \$84,000 for the landscaping (tree replacement).
- 7. As built drawings shall be required for the drainage and sewer system with a letter from the Design Engineer that they are constructed per the approved drawings and functioning as intended.

After discussion, Commissioner Harris made a motion to approve Item 1, Final Plat for the creation of 70 single-family lots and five (5) open space lots within section 17 of Tollgate Village with Staff recommended contingencies. The motion was seconded and carried by all.

New Business:

2. Preliminary Plat for the subdivision of 69 lots for the development of Avenue Downs.

Item 2 was withdrawn by the applicant.

3. Final Plat for the creation of three (3) single-family lots within section 18A of Tollgate Village (FP 2018-016)

Mrs. Deats reviewed her report and Staff recommends the Planning Commission approve the final plat with the following contingencies:

- 1. Prior to the recordation of the final plat, the plats with all remaining open space shall be recorded.
- 2. Prior to the recordation of the final plat, the development agreement for phase 18 shall be approved and executed between the Town and the developer.
- 3. Prior to recordation of the final plat, a surety shall be submitted to the Town in the amount of \$16,500 for sewer with automatic renewal.
- 4. As built drawings shall be required for the drainage and sewer system with a letter from the Design Engineer that they are constructed per the approved drawings and functioning as intended.

After discussion, Commissioner Roberts made a motion to approve Item 3, Final Plat for the creation of three (3) single-family lots within section 18A of Tollgate Village with Staff recommended contingencies. The motion was seconded and carried by all.

Municipal Planning Commission – Minutes of the Meeting	
September 25th, 2018	

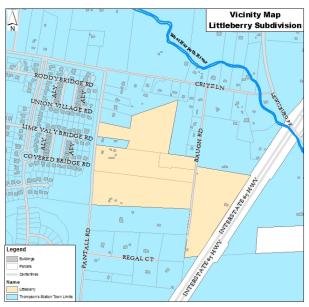
Page 3

4. LDO Amendment to reduce the garage as required in Section 4.10 Use Residential Property Standards (LDO Amend 2018-006)

Mrs. Deats reviewed her report and Staff recommends that the Planning Commission consider recommending the amendment as proposed to the Board of Mayor and Aldermen.

After discussion, Commissioner Roberts made a motion to deny the LDO Amendment to reduce the garage as required in Section 4.10 Use Residential Property Standards. The motion was seconded and carried by all.

There being no further business, Commissioner Alexander made a motion to adjourn. The motion was seconded, and the meeting was adjourned at 7:59 p.m.


	Jack Elder, Chairman	
Attest:		

Thompson's Station Planning Commission Staff Report – Item 1 (PP 2018-006) October 25, 2018

Littlebury Preliminary Plat for the creation of 91 single family lots and 13 open space lots on 91.17 acres along the east side of Pantall Road along with the removal of 14 trees. The applicant is also requesting the Town vacate Baugh Road as is currently identified.

PROJECT DESCRIPTION

Great Tennessee Land Company submitted a request for a preliminary plat to subdivide 91.17 acres include 91 single family lots and 13 open space lots located along the east side of Pantall Road along with the removal of 14 trees that have a diameter of 18 inches of greater. The applicant is also requesting that Baugh Road through the project site be vacated and a new connection be approved.

BACKGROUND

The developer, Great Tennessee Land Company submitted a concept plan for review in November 2017. The project originally included the development of 87 single family homes on 87.1 acres along the east side of Pantall Road. Staff noted during the planner report that the project was substantially consistent with the D1 zoning district, however, some details were not shown on the concept plan and are reviewed during the preliminary plat phase for compliance with the LDO. Staff also expressed concerns that a traffic study had not been submitted and a connection to Baugh Road should be considered during the evaluation of access to the site to provide another future access to the residences.

The developer has acquired additional acreage and has modified the concept plan to 91 single-family lots on 91.17 acres. The developer has also considered the location of Baugh Road and is proposing a future connection to Baugh Road and requesting the town vacate the current Baugh Road.

ANALYSIS

Land Use/Density

The proposed residential subdivision is located within the D1 – Low Intensity zoning district which single family at a density of one unit per acre. The overall project area is 91.17 acres thereby

permitting up to 91 single family lots. The proposed neighborhood is located along a collector, Pantall Road and has freeway adjacency in proximity to other single family residences.

Lot Width and Setbacks

The single family lots will vary in size from .27 acres to over an acre with widths greater than 85 feet. The proposed setbacks are 25 feet for the front yard setback, 10 feet for the side yards and 30 feet for the rear yard setback. The zone permits 25 feet for the front yard, an aggregate of 20 feet with a minimum of five feet for the side yard and 30 feet for the rear yard. Secondary frontages shall maintain a minimum of 20 feet. Driveway lengths are required to be a minimum of 20 feet with a width of 12 feet from the right of way to the setback (25 feet).

Roadways

The standard for local roadways is 50 feet. The project will consist of two entrances from Pantall Road, Cherry Jack and Littlebury Park and a network of local roads to serve each lot within the neighborhood. Both Cherry Jack and Littlebury Park have a median proposed within the right-of-way, however all roadways will have a 50 feet right-of-way with a five-foot-wide landscape strip and a five-foot-wide sidewalk. Street lights are not shown on the plat; however, Staff recommends a contingency that street lights shall be installed within the landscape strip between the sidewalk and the roadway. The maximum block length permitted within the D1 zoning district is 1200 feet. The maximum block length within the neighborhood is 1100 feet.

Currently Baugh Road is a private driveway that runs through the east side of the proposed project in proximity to Interstate 65. The applicant is requesting that this portion of Baugh Road be vacated, and a new connection be approved (see attached exhibit). To vacate a right-of-way, the Board of Mayor and Aldermen would need to review the request, however, Staff recommends that the Planning Commission evaluate the street network through the proposed development and make a recommendation for the vacation of the existing road as shown on the county maps. The future connection to Baugh Road would be located between two open space lots 96 and 97.

Slope and Critical Lots

No development on areas greater than 25% is permitted or proposed on the plat. However, several lots contain slopes between 15 and 25% and are critical lots due to these slopes. A grading plan will be reviewed with the construction plans for the overall phase. Prior to the issuance of building permits, all critical lots require engineered site plans and site-specific grading plans to address any issues.

Open Space

Residential subdivisions require a minimum of 45% open space which is required to be platted as permanent open space. Land that is undevelopable, such as but not limited to, areas of 25% of greater slope, waterways or sinkholes shall be placed within the open space. The developer proposed 46.01 acres or 50% of the site. The proposed open space is not entirely contiguous however is determined based on the location of the resources throughout the site. The open space is planned around the natural and historic resources on the site and includes a cemetery, areas of undevelopable slope, the water resources, and some wooded areas.

Amenities

The proposed subdivision consisting of 91 lots is required to have one amenity to serve the residents. The developer proposes a trail network through the open space connecting to the sidewalks to meet the code. In addition, another (second) amenity area is proposed within open

space lot 98. No plans for the second amenity are submitted at this time, however, is available for future use.

Landscaping/Tree Removal

The subdivision, located within the D1 zoning district abuts other D1 zoning and is required to have a type 2 buffer adjacent to surrounding properties. The applicant proposes a type 2 buffer along the property lines within the public utility and drainage easement.

The development of this project includes the removal of 14 trees for a total of 589.5 inches. The Land Development Ordinance requires the replacement of trees 18 inches or greater to be replaced at a ratio of one and a half inches for every inch removed. Therefore, 884.25 inches of trees are required to be replaced on the site. The landscape plan includes the planting of 1225 inches of trees on site, which will be planted as street trees and front yard trees for each lot.

Construction Route

Access to the subdivision will consist of two new roadways (entrances from Pantall Road), Cherry Jack and Littlebury Park, which will serve the internal network of local roads. The first phase will result in the construction of Cherry Jack which will serve as the construction access/route into/through the subdivision. Once phase 1 is complete and roads are final topped, Littlebury Park will become the construction access and route for the duration of the project.

Natural Resources

The overall site contains several water features and are within the jurisdiction of the Tennessee Department of Environment and Conservation (TDEC). Two roadways, Cherry Jack and Littlebury Park Drive are shown crossing water features (stream) on the site. Therefore, prior to any construction activities, permits shall be required through TDEC. A cemetery is also located on site and shall be preserved with a 20-foot access easement and located within the open space. A geotechnical report was submitted, and recommendations will be incorporated into project approval.

Traffic Study

A traffic study was submitted, reviewed by the Town's traffic engineer and a revised study was submitted as a result of the comments. Barge Design Solutions has reviewed the revised study. They find that the revised study addresses the comments and offers mitigation that is expected to mitigate the impacts of the proposed development. Therefore, Staff recommends that the report be accepted, and the traffic mitigation/recommendations are included in the contingencies.

Barge Design Solutions also recommends that the right-of-way dedication be confirmed on the plat. The plat does not clearly state the dedication of the right-of-way; therefore, Staff recommends the incorporation of a contingency for the dedication of the roadway along the project frontage.

RECOMMENDATION

Based on the project's compliance with the Town's Land Development Ordinance, Staff recommends the that the Planning Commission approve the plat with the following contingencies:

- 1. Prior to the approval of construction plans, the developer shall enter into a development agreement for the project.
- 2. Prior to the approval of a final plat, roadway dedication along the entire project frontage on Pantall Road shall be incorporated into the plat for recordation of the public right-of-way.
- 3. Prior to the approval of construction plans, the developer shall obtain any necessary permits through the Tennessee Department of Environment and Conservation.

- 4. Prior to the approval of construction plans, the developer shall obtain BOMA approval for a wastewater management plan.
- 5. Prior to the approval of construction plans, all applicable codes and regulations shall be addressed to the satisfaction of the Town Engineer. Any corrections or issues with the drawings related to regulations may be subject to further Planning Commission review.
- 6. Prior to the approval of construction drawings, a drainage study shall be submitted to verify that storm water is managed adequately on site.
- 7. All landscape buffers and replacement trees shall be installed and maintained in a healthy manner.
- 8. Any signage proposed for the subdivision shall comply requirements set forth within the Land Development Ordinance and shall be located within the open space and maintained by the homeowner's association.
- 9. Street lights shall be incorporated in accordance with the Land Development Ordinance and shall be documented on the construction drawings.
- 10. All construction traffic into these phases shall be required to use Cherry Jack during phase 1. Upon completion of phase 1 and the final topping of the roadways within the phase, Littlebury Park shall be used for all construction traffic. No construction traffic is permitted on Baugh Road or Regal Court.
- 11. All recommendations within the geotechnical report shall be adhered to during construction activities. Any new information or features not identified shall be subject to the review by a geotechnical engineer.
- 12. All recommendations within the traffic study shall be completed.
- 13. Any change of use or expansion of the project site shall conform to the requirements set forth within the Land Development Ordinance and shall be approved prior to the implementation of any changes to the project.

Staff recommends that the Planning Commission recommend that the Board of Mayor and Aldermen approve vacating a portion of Baugh Road through Tax Map 145, Parcel 039.00 (as noted on the Williamson County tax records) be approved with the following contingency:

1. A connection to Baugh Road shall be constructed as shown on the preliminary plat and shall be used as fire access only until such time that improvements to Baugh Road will be made for public access.

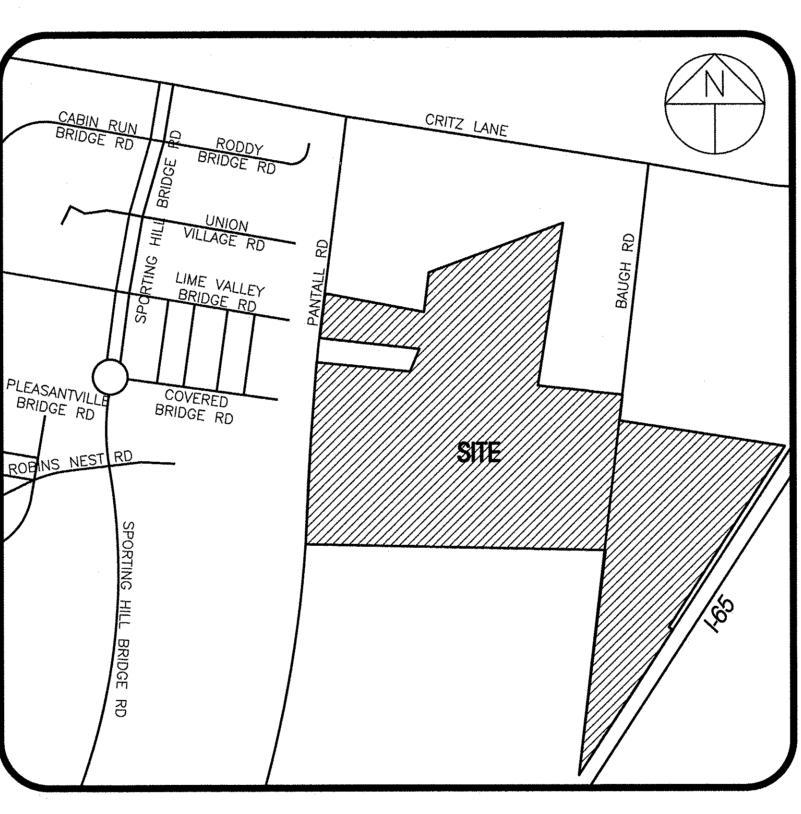
ATTACHMENT

Preliminary Plat packet Revised Traffic Study (dated September 2018) Barge Design Traffic Memo Baugh Road exhibit

Littlebury Subdivision Preliminary Plat

Thompson's Station, Tennessee

Drawing Index


Sheet No.

1991 1401

C0.0 C0.1

C1.0 - C1.7

Cover Sheet
Master Site Plan
Preliminary Plats

Site Location Map

Watershed: West Harpeth River

Owner:

- Kim Davis
 2625 Baugh Ln.
 Thompson station, TN 37179
 DB 6178
 PG 490
- Lisa Horvath
 2632 Pantall Rd.
 Thompson Station, TN 37179
 DB 1488
 PG 898
- 3. W.T. Williams 2638 Pantall Rd. Thompson Station, TN 37179 DB 1000
- PG 757
 4. Robert White
 6430 Arno Rd.
 College Grove, TN 37046
 DB 4461
- PG 864
 5. Don Cameron
 2634 Baugh Ln.
 Thompson Station, TN 37179
 DB 3881
- PG 473
 6. William Marlin
 319 Lakeway Ter.
 Springhill, TN 37174
 DB 119
 PG 170
- 7. Ellen Bogle 6430 Arno Rd. College Grove, TN 37046 DB 364 PG 372

Developer:

Great Tennessee Land Co. c/o: Mr. Daniel Woods 7123 Cross Roads, Suite E Brentwood, TN 37027

Floodplain Note:

No Portion of this site lies within a 100 Year Flood Hazard Area per F.E.M.A. Map No. 47187C0365F, dated Sept. 29, 2006.

Land Data:

91 Buildable Lots on 35.41 Ac.±
13 Open Space Lots on 45.75 Ac.± (50%)
Total Land Area: 91.17 Ac.±
Zoned: D1

Lot Setbacks:

Front: 25' Side: 10' Rear: 30'

Deed Reference:

The property shown hereon as follows in Williamson County.

Тах Мар	Parcel	Deed	Page
145	34.00	4461	864
145	34.05	364	372
145	37.00	1000	757
145	37.01	1488	898
145	37.07	6178	490
145	38.00	119	170
145	39.00	3881	473

S.T.E.P. System Data:

Wastewater Lots: 10.60± Acres

Design Flow = 30,000 GPD

Required Land Application Area + Reserve Area = 5.17 Ac.

Provided Land Application Area + Reserve Area = 6.37 Ac.

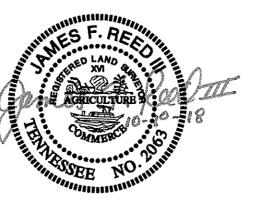
Approved by the City of Thompson Station Planning Commission, with such conditions as are indicated in the minutes of the Commission on _/ /_.

Purpose Statement:

Purpose of the Preliminary Plat is to Subdivide these 91 Acres into 91 Residential Lots

SEC, Inc. $\frac{s}{2}$

SITE ENGINEERING CONSULTANTS


ENGINEERING · SURVEYING · LAND PLANNING

850 MIDDLE TENNESSEE BOULEVARD MURFREESBORO, TENNESSEE 37129
PHONE: (615) 890-7901 E-MAIL: JREED@SEC-CIVIL.COM FAX: (615) 895-2567

NO PORTION OF THIS DRAWING MAY BE REPRODUCED WITHOUT THE EXPRESSED WRITTEN CONSENT OF S.E.C. INC.

By: Chmes 4. Peell TIE

James F. Reed III, P.E., R.L.S. TN. Reg. #02063

Sheet C0.0 Littlebury S.E.C. Project #17224 Date: 5-1-18 Revised: 8-30-18 Comments 9-26-18 Update Lot Layout

Contacts:

2156 Edward Curd Lane

Phone: (615) 794-3561

Engineer/Surveyor:

850 Middle Tennessee Blvd

Murfreesboro, TN 37129

Phone: (615) 890-7901

Contact: Jamie Reed

Clifton and King, LLC

1525 Thompson Rd. W.

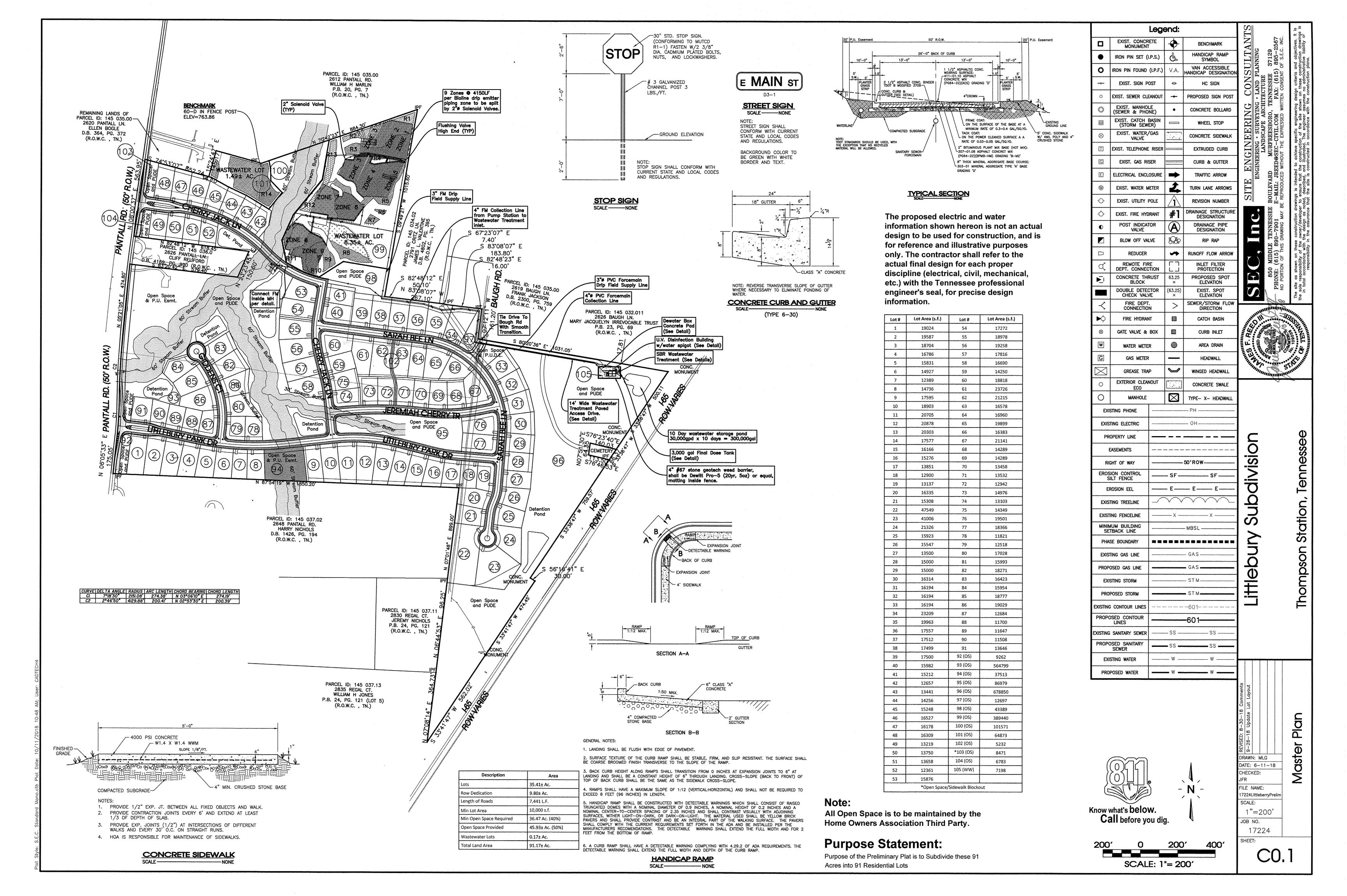
Phone: (615) 591-9885

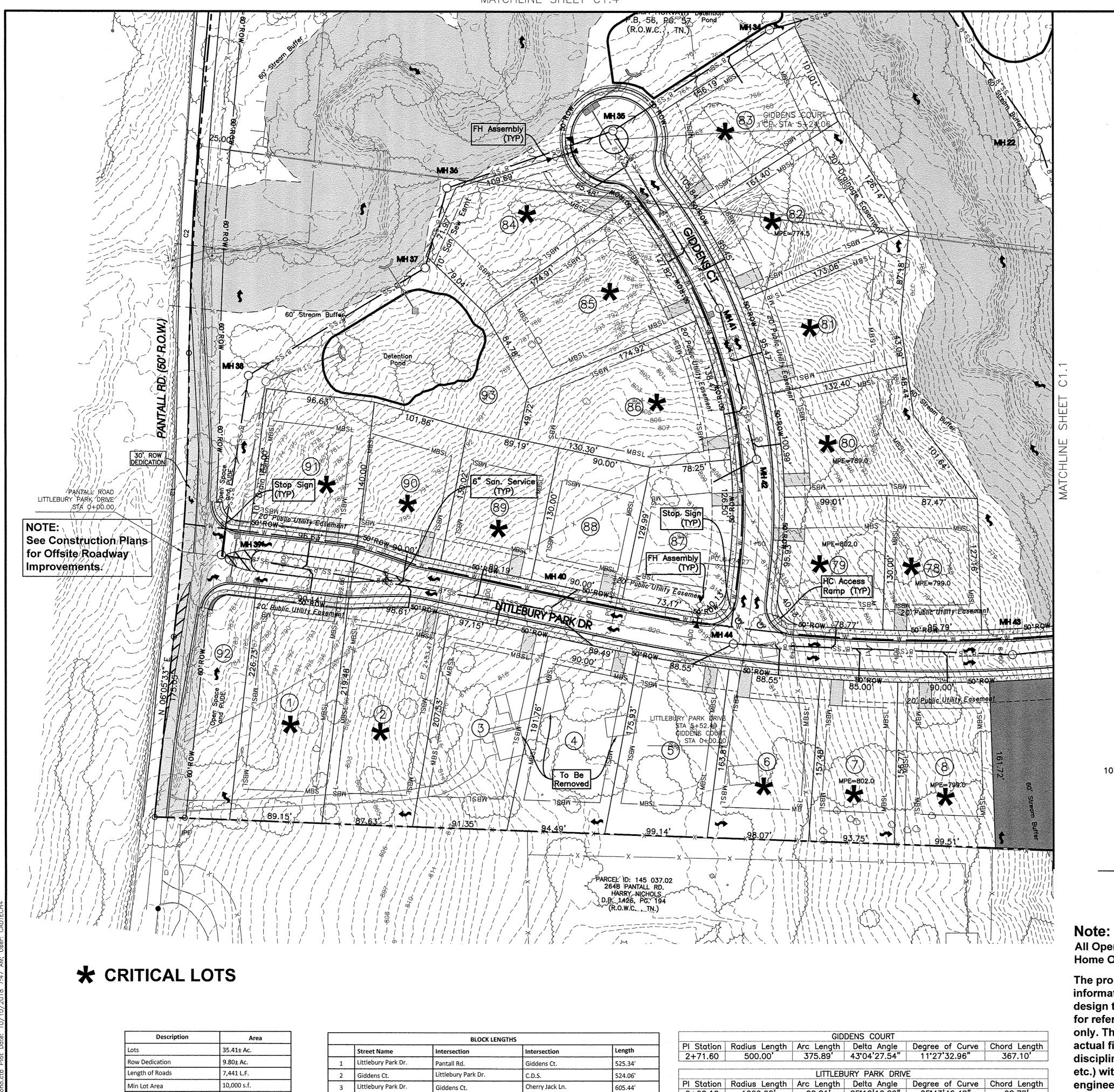
Contact: Steve Clifton

Franklin, TN 37064

Phone: (615) 794-7796

H.B. & T.S. 505 Downs Blvd.


Thompson Station, TN 37179


Site Engineering Consultants, Inc.

Contact: Jacob Cain

Franklin, TN 37067

Middle Tennessee Electric Member. Corp.:

Description	Area
Lots	35.41± Ac.
Row Dedication	9.80± Ac.
Length of Roads	7,441 L.F.
Min Lot Area	10,000 s.f.
Min Open Space Required	36.47 Ac. (40%)
Open Space Provided	45.93± Ac. (50%)
Wastewater Lots	0.17± Ac.
Total Land Area	91.17± Ac.

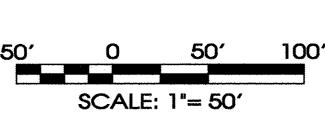
	Street Name	Intersection	Intersection	Length
1	Littlebury Park Dr.	Pantall Rd.	Giddens Ct.	525.34'
2	Giddens Ct.	Littlebury Park Dr.	C.D.S.	524.06'
3	Littlebury Park Dr.	Giddens Ct.	Cherry Jack Ln.	605.44'
4	Littlebury Park Dr.	Cherry Jack Ln.	Sarah Bee Ln.	904.75'
5	Sarah Bee Ln.	Littlebury Park Dr.	C.D.S.	296.14'
6	Sarah Bee Ln.	Littlebury Park Dr.	Jeremiah Cherry Tr.	286.91'
7	Sarah Bee Ln.	Jeremiah Cherry Tr.	Giddens Ct.	1155.28'
8	Cherry Jack Ln.	Littlebury Park Dr.	Jeremiah Cherry Tr.	141.45'
9	Cherry Jack Ln.	Jeremiah Cherry Tr.	Sarah Bee Ln.	472.49
10	Cherry Jack Ln.	Sarah Bee Ln.	Pantall Rd.	1331.92'

PI Station	Radius Length	Arc Length	Delta Angle	Degree of Curve	Chord Length
2+71.60	500.00	375.89	43'04'27.54"	11'27'32.96"	367.10
		LITTLEB	URY PARK DRIV	E	
PI Station	Radius Length	Arc Length	Delta Angle	Degree of Curve	Chord Length
2+08.10	1000.00'	90.81	05'12'10.80"	05'43'46,48"	90.78
6+62.65	1500.00'	478.24'	18'16'03.28"	03'49'10.99"	476.22'
13+47.72	1000.00'	360.36'	20'38'49.51"	05'43'46.48"	358.41
17+60.58	800.00'	134.59'	09'38'22.38"	07*09'43.10"	134.43'

Lot#	Lot Area (s.f.)	Lot#	Lot Area (s.f.)	
1	19024 19587	54 55	17272 18978	
3	18704	56	19258	
4	16786	57	17816	
5	15831	58	16690	
6	14927	59	14250	
8	12389 14736	60	18818 23726	
9	17595	62	21215	
10	18903	63	16578	
11	20705	64	16960	
12	20878	65	19899	
13 14	20303 17577	66	16383 21141	
15	16166	68	14289	
16	15276	69	14289	
17	13851	70	13458	
18	12900	71	13532	
19 20	13137 16335	72	12942 14976	
21	15308	74	13103	
22	47549	75	14349	
23	41006	76	19501	
24	21326	77	18366	
25 26	15923 15547	78	11821 12518	
27	13500	80	17028	
28	15000	81	15993	
29	15000	82	18271	
30	16314	83	16423	
32	16194	85	15954 18777	
33	16194	86	19029	
34	23209	87	12684	**************************************
35	19963	88	11700	And the state of t
36 37	17557 17512	90	11647 11508	
38	17499	91	13646	
39	17500	92 (OS)	9262	
40	15982	93 (OS)	564799	
41	15212	94 (OS)	37513	
42	12657 13441	95 (OS) 96 (OS)	86979 678850	
44	14256	97 (OS)	12697	
45	15248	98 (OS)	43389	
46	16527	99 (OS)	389440	And the state of t
47	16178	100 (OS) 101 (OS)	101571	Avademinate Avademinate Avademinate Avademinate Avademinate Avademinate Avademinate Avademinate Avademinate Av
48	16309 13219	102 (OS)	64873 5232	Avverteered by Avvert
50	13750	*103 (OS)	8471	ANN
51	13658	104 (OS)	6783	de contractivo de la contractivo della contracti
52	12361	105 (WW)	7198	ANTHER METANGEN STATE OF THE ST
53	*Open Space	/Sidewalk Block	Out	and the same of th
CUDVE			I CHORD BEARING CH	OPD LENGTH
CI C2	7°18'30" 2151.0 2°46'50" 4129.0	8' 274.38'	N 03°06'10" E N 02°53'30" E	274.19' 200.39'
			J.D.E. around	1
	Lot Line	Proper	ty Lines (TYP)	
Γ	30'		30' t	
TS8W -	MBSI	MBSL-	Ŭ,	
-	10'-	10'		
	(65)		66)	25'
***************************************		Cor	ner Lot	RO₩
MBS MBS	M.B.S.L. MBSL	Naw N	1.B.S.L.	ž Ž
4	-	 		
2	.5'		25'	/
200 mg 1 mg	ROW-		ROW	
	T 1		etween Building	(Min)
	Typical	LOT DO N.T.S.	Tall	

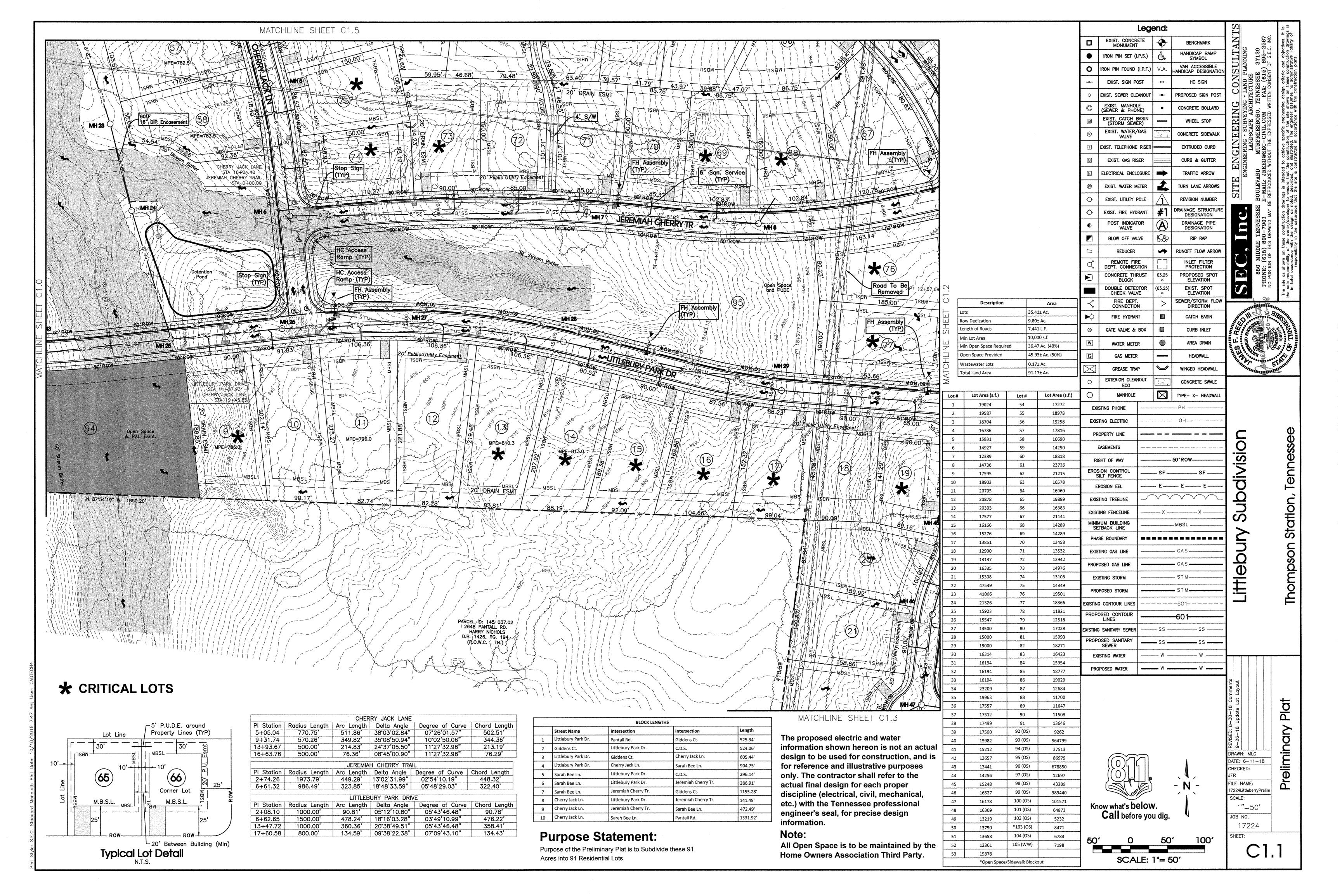
All Open Space is to be maintained by the Home Owners Association Third Party.

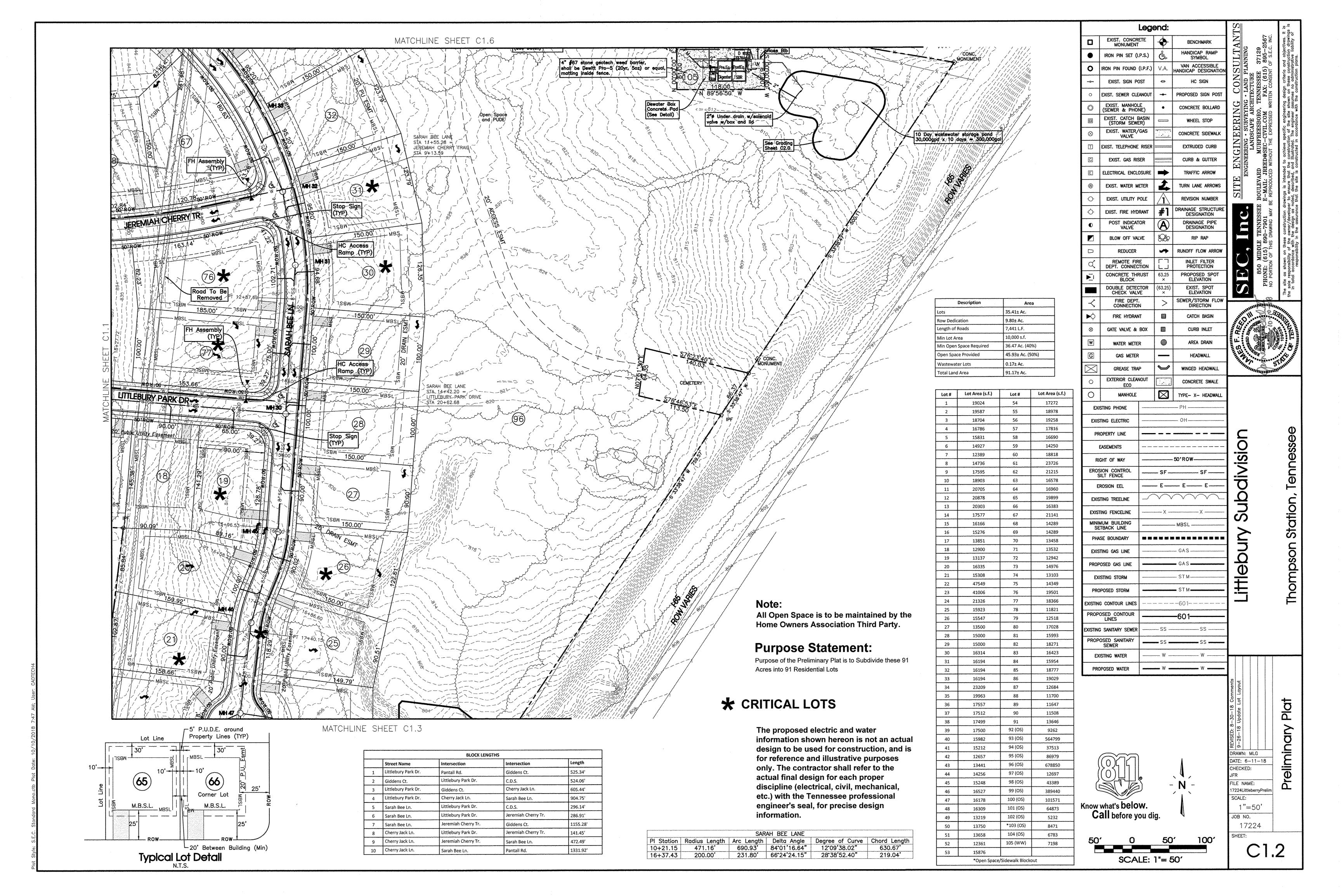
The proposed electric and water information shown hereon is not an actual design to be used for construction, and is for reference and illustrative purposes only. The contractor shall refer to the actual final design for each proper discipline (electrical, civil, mechanical, etc.) with the Tennessee professional engineer's seal, for precise design information.

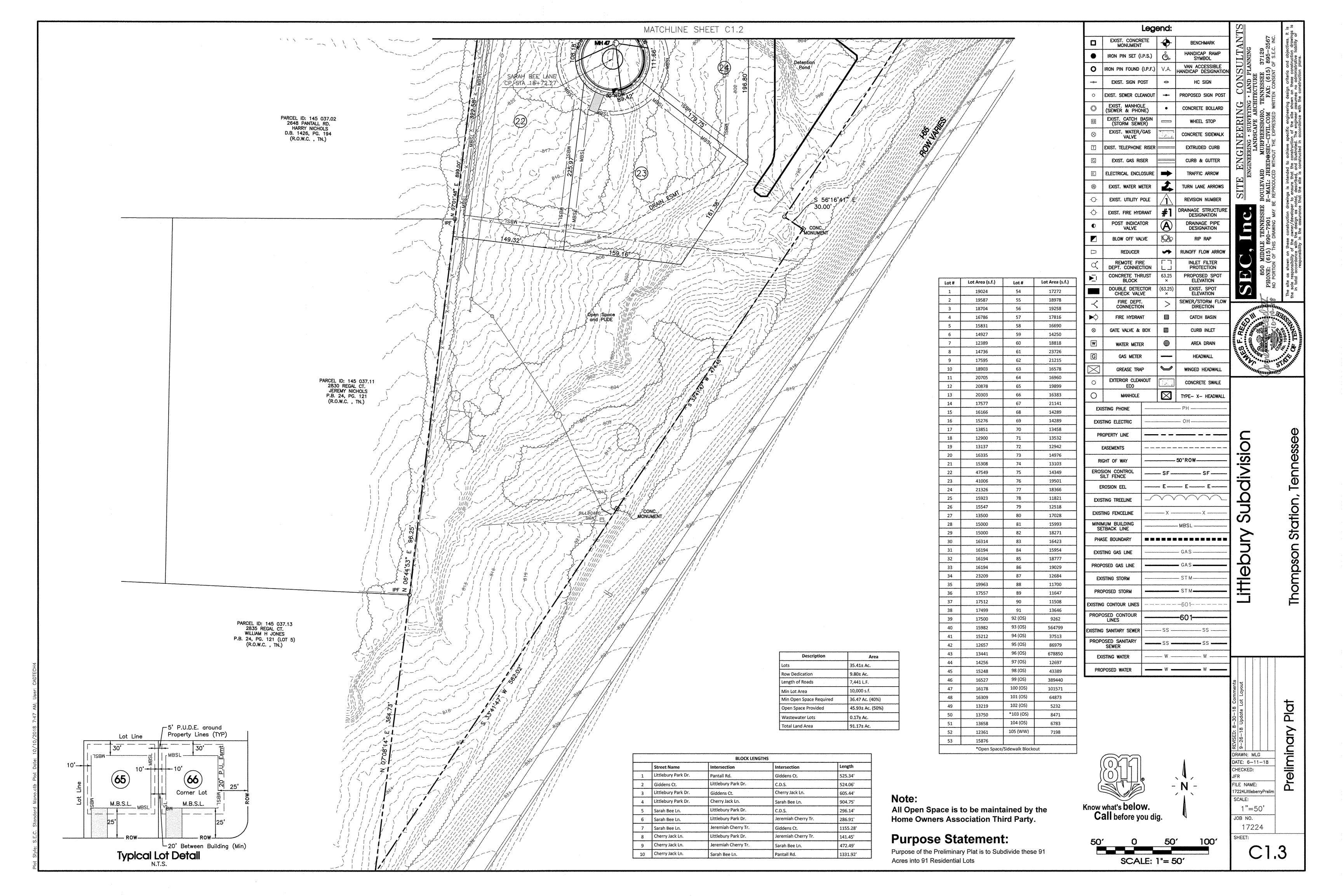

Purpose Statement:

Purpose of the Preliminary Plat is to Subdivide these 91 Acres into 91 Residential Lots

		Lege	end:	
0	EXIST. CONCRI MONUMENT			BENCHMARK
•	iron pin set (i.	.P.S.)	<u>-5</u>	HANDICAP RAMP SYMBOL
0	IRON PIN FOUND	(I.P.F.)	V.A.	VAN ACCESSIBLE HANDICAP DESIGNATION
	EXIST. SIGN PO	OST	0	HC SIGN
٥	EXIST. SEWER CLEANOUT			PROPOSED SIGN POST
0	EXIST. MANHOL (SEWER & PHO		•	CONCRETE BOLLARD
	EXIST. CATCH E		====	WHEEL STOP
8	EXIST. WATER/ VALVE	GAS		CONCRETE SIDEWALK
	EXIST. TELEPHONE	RISER		EXTRUDED CURB
G	EXIST. GAS RIS	SER		CURB & GUTTER
É	ELECTRICAL ENCLO	DSURE	-	TRAFFIC ARROW
®	EXIST. WATER M	ETER	2	TURN LANE ARROWS
-	exist, utility f	POLE	$\overline{\Lambda}$	REVISION NUMBER
'	EXIST. FIRE HYD		#1	DRAINAGE STRUCTURE
•	POST INDICAT		(A)	DESIGNATION DRAINAGE PIPE
	VALVE BLOW OFF VAL	VC	(O)	DESIGNATION RIP RAP
		.V.C.	8.68	
	REDUCER REMOTE FIR	F		RUNOFF FLOW ARROW INLET FILTER
<u>=</u>	DEPT. CONNEC	TION	63.25	PROTECTION PROPOSED SPOT
	BLOCK		×	ELEVATION
	DOUBLE DETEC	Æ	(63.25) ×	EXIST. SPOT ELEVATION
<u> </u>	FIRE DEPT. CONNECTION		>	SEWER/STORM FLOW DIRECTION
>	FIRE HYDRAN	T		CATCH BASIN
⊗.	GATE VALVE &	вох		CURB INLET
W	WATER METEI	R	•	AREA DRAIN
G	GAS METER	·		HEADWALL.
\boxtimes	GREASE TRAI	P	~	WINGED HEADWALL
		·ALT	فتستنعا	
0	EXTERIOR CLEAN ECO	1001		CONCRETE SWALE
0	i	1001		CONCRETE SWALE TYPE- X- HEADWALL
0	ECO	NOUI		
EXI	ECO MANHOLE			TYPE- X- HEADWALL
EXIS	ECO MANHOLE STING PHONE			TYPE- X- HEADWALLPH
EXIS	ECO MANHOLE STING PHONE TING ELECTRIC			TYPE- X- HEADWALLPH
EXIS EXIS PR	ECO MANHOLE STING PHONE TING ELECTRIC OPERTY LINE			TYPE- X- HEADWALL PH OH
EXIS EXIS PR I RIC EROS	ECO MANHOLE STING PHONE TING ELECTRIC OPERTY LINE EASEMENTS GHT OF WAY SION CONTROL			TYPE- X- HEADWALL PH OH
EXIS EXIS PR I RIC EROS S	ECO MANHOLE STING PHONE TING ELECTRIC OPERTY LINE EASEMENTS GHT OF WAY		SF-	TYPE- X- HEADWALL PH OH 50'ROW
EXIS EXIS PR I RIC EROS S	ECO MANHOLE STING PHONE TING ELECTRIC OPERTY LINE EASEMENTS GHT OF WAY SION CONTROL ILT FENCE		SF-	TYPE- X- HEADWALL
EXIS EXIS PR I RIC EROS S EI EXIS	ECO MANHOLE STING PHONE TING ELECTRIC OPERTY LINE EASEMENTS GHT OF WAY SION CONTROL ILT FENCE ROSION EEL		SF	TYPE- X- HEADWALL
EXIS EXIS PR RIC EROS S EXIS EXIST MINIM	ECO MANHOLE STING PHONE TING ELECTRIC OPERTY LINE EASEMENTS GHT OF WAY SION CONTROL ILT FENCE ROSION EEL TING TREELINE JUM BUILDING		- SF E X X X X X X	TYPE- X- HEADWALL - PH
EXIS EXIS PR RIC EROS S EXIS EXIS MINIM SE	ECO MANHOLE STING PHONE TING ELECTRIC OPERTY LINE EASEMENTS GHT OF WAY SION CONTROL ILT FENCE ROSION EEL TING TREELINE ING FENCELINE		- SF E X X X X X X	TYPE- X- HEADWALL
EXIS PR I RIC EROS S EXIST MINIM SE PHA	ECO MANHOLE STING PHONE TING ELECTRIC OPERTY LINE EASEMENTS GHT OF WAY SION CONTROL ILT FENCE ROSION EEL TING TREELINE MUM BUILDING TBACK LINE		- SF E X X X X X X	TYPE- X- HEADWALL
EXIS EXIS PR RIC EROS S EXIS EXIS MINIM SE PHA EXIS	MANHOLE STING PHONE TING ELECTRIC OPERTY LINE EASEMENTS SHT OF WAY SION CONTROL ILT FENCE ROSION EEL TING TREELINE ING FENCELINE MUM BUILDING TBACK LINE SE BOUNDARY		- SF X X X X X X X	TYPE- X- HEADWALL
EXIS PR EROS S EXIS EXIS MINIM SE PHA EXIS PROP	MANHOLE STING PHONE TING ELECTRIC OPERTY LINE EASEMENTS GHT OF WAY SION CONTROL ILT FENCE ROSION EEL TING TREELINE TING FENCELINE MUM BUILDING TBACK LINE SE BOUNDARY TING GAS LINE OSED GAS LINE		SF E X X X X X X	TYPE- X- HEADWALL - PH
EXIS EXIS PR EROS S EXIS EXIS EXIS PHA EXIS PROP EXI	ECO MANHOLE STING PHONE TING ELECTRIC OPERTY LINE EASEMENTS SHT OF WAY SION CONTROL ILT FENCE ROSION EEL TING TREELINE MUM BUILDING TBACK LINE SE BOUNDARY TING GAS LINE OSED GAS LINE STING STORM		- SF X X X X X X X	TYPE- X- HEADWALL PH OH SO'ROW X MBSL GAS ST M
EXIS EXIS PR RII EROS S EXIST MINIM SE PHA EXIS PROP EXI	MANHOLE STING PHONE TING ELECTRIC OPERTY LINE EASEMENTS GHT OF WAY SION CONTROL ILT FENCE ROSION EEL TING TREELINE ING FENCELINE MUM BUILDING TBACK LINE SE BOUNDARY TING GAS LINE OSED GAS LINE STING STORM POSED STORM		- SF E X	TYPE- X- HEADWALL PH OH SF E E X MBSL GAS ST M ST M
EXIS EXIS PR RII EROS S EXIST MINIM SE PHA EXIS PROP EXI	MANHOLE STING PHONE TING ELECTRIC OPERTY LINE EASEMENTS CHT OF WAY SION CONTROL ILT FENCE ROSION EEL TING TREELINE ING FENCELINE MUM BUILDING TBACK LINE SE BOUNDARY TING GAS LINE OSED GAS LINE STING STORM POSED STORM CONTOUR LINES		- SF X X X X X X X	TYPE- X- HEADWALL PH OH 50'ROW X MBSL GAS ST M ST M
EXIS PR RII EROS S EXIST MINIM SE PHA EXIS PROP EXI	MANHOLE STING PHONE TING ELECTRIC OPERTY LINE EASEMENTS CHT OF WAY SION CONTROL ILT FENCE ROSION EEL TING TREELINE MUM BUILDING TBACK LINE SE BOUNDARY TING GAS LINE OSED GAS LINE STING STORM POSED STORM CONTOUR LINES OSED CONTOUR LINES		- SF E X	TYPE- X- HEADWALL PH OH 50'ROW SF E E E X MBSL GAS GAS STM STM 601 601
EXIS EXIS PR EROS S EXIS EXIS EXIS EXIS PHA EXIS PROP EXI PROP EXISTING	MANHOLE STING PHONE TING ELECTRIC OPERTY LINE EASEMENTS CHT OF WAY SION CONTROL ILT FENCE ROSION EEL TING TREELINE MUM BUILDING TBACK LINE SE BOUNDARY TING GAS LINE OSED GAS LINE STING STORM POSED STORM CONTOUR LINES OSED CONTOUR LINES SANITARY SEWER		- SF X SS SS	TYPE- X- HEADWALL PH OH SO'ROW X MBSL GAS GAS STM -601 SS
EXIS EXIS PR EROS S EXIS EXIS EXIS EXIS PHA EXIS PROP EXI PROP EXISTING	MANHOLE STING PHONE TING ELECTRIC OPERTY LINE EASEMENTS CHT OF WAY SION CONTROL ILT FENCE ROSION EEL TING TREELINE MUM BUILDING TBACK LINE SE BOUNDARY TING GAS LINE OSED GAS LINE STING STORM POSED STORM CONTOUR LINES OSED CONTOUR LINES		SF E X SS	TYPE- X- HEADWALL PH OH So'ROW SF E E E X MBSL GAS GAS ST M ST M FOOT SS SS SS
EXIS PROPORTION EXISTING PROPORTION EXISTING PROPORTION PROPORTION	MANHOLE STING PHONE TING ELECTRIC OPERTY LINE EASEMENTS CHT OF WAY SION CONTROL ILT FENCE ROSION EEL TING TREELINE MUM BUILDING TBACK LINE SE BOUNDARY TING GAS LINE OSED GAS LINE STING STORM POSED STORM CONTOUR LINES OSED CONTOUR LINES SANITARY SEWER OSED SANITARY		SF E X SS SS W	TYPE- X- HEADWALL PH OH SO'ROW X MBSL GAS GAS STM -601 SS




Know what's **below**. **Call** before you dig.



DRAWN: MLG FILE NAME: 17224LittleberryPrelin 1"=50' JOB NO. 17224

C1.0

Note:

Lot Area (s.f.)

17272

18978

19258

17816

16690

14250

18818

23726

21215

16578

16960

19899

16383

21141

14289

14289

13458

13532

12942

14976

13103

14349

19501

18366

11821

12518

17028

15993

18271

16423

15954

18777

19029

12684

11700

11647

11508

13646

9262

564799

37513

86979

678850

12697

43389

389440

101571

64873

5232

6783

7198

77

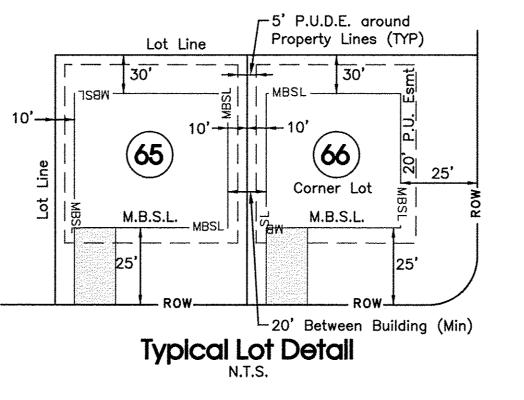
86

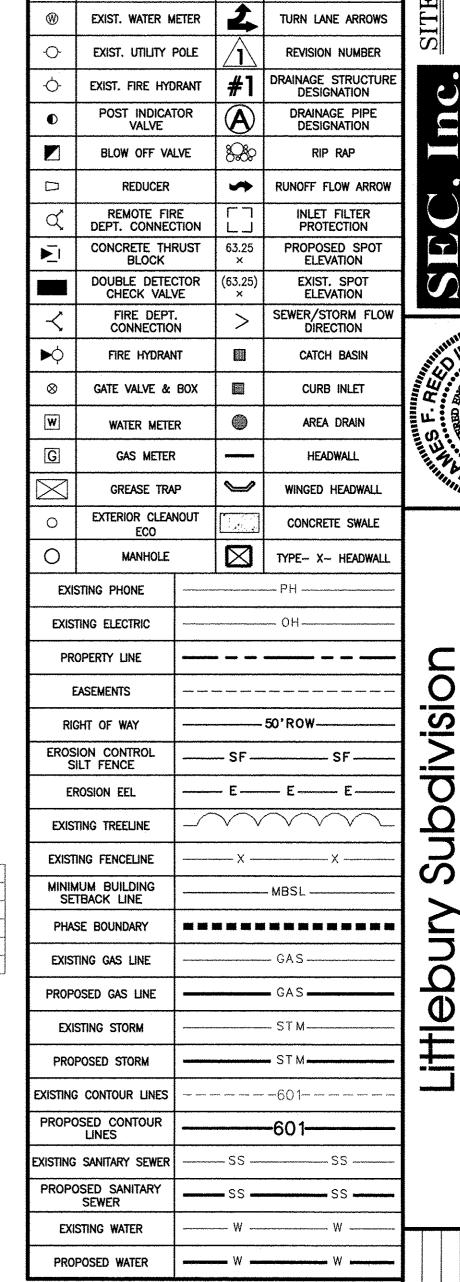
90

54

All Open Space is to be maintained by the **Home Owners Association Third Party.**

The proposed electric and water information shown hereon is not an actual design to be used for construction, and is for reference and illustrative purposes only. The contractor shall refer to the actual final design for each proper discipline (electrical, civil, mechanical, etc.) with the Tennessee professional engineer's seal, for precise design information.


Purpose Statement:


Purpose of the Preliminary Plat is to Subdivide these 91 Acres into 91 Residential Lots

Description	Area
.ots	35.41± Ac.
Row Dedication	9.80± Ac.
ength of Roads	7,441 L.F.
Vin Lot Area	10,000 s.f.
Min Open Space Required	36.47 Ac. (40%)
Open Space Provided	45.93± Ac. (50%)
Wastewater Lots	0.17± Ac.
Total Land Area	91.17± Ac.

CHERRY JACK LANE						
PI Station	Radius Length	Arc Length	Delta Angle	Degree of Curve	Chord Length	
5+05.04	770.75	511.86'	38'03'02.84"	07'26'01.57"	502.51	
9+31.74	570.26'	349.82'	35'08'50.94"	10'02'50.06"	344.36'	
13+93.67	500.00'	214.83'	24'37'05.50"	11'27'32.96"	213.19'	
16+63.76	500.00'	76.36'	08'45'00.90"	11'27'32.96"	76.29'	

BLOCK LENGTHS							
	Street Name	Intersection	Intersection	Length			
1	Littlebury Park Dr.	Pantall Rd.	Giddens Ct.	525.34'			
2	Giddens Ct.	Littlebury Park Dr.	C.D.S.	524.06'			
3	Littlebury Park Dr.	Giddens Ct.	Cherry Jack Ln.	605.44'			
4	Littlebury Park Dr.	Cherry Jack Ln.	Sarah Bee Ln.	904.75'			
5	Sarah Bee Ln.	Littlebury Park Dr.	C.D.S.	296.14'			
6	Sarah Bee Ln.	Littlebury Park Dr.	Jeremiah Cherry Tr.	286.91			
7	Sarah Bee Ln.	Jeremiah Cherry Tr.	Giddens Ct.	1155.28			
8	Cherry Jack Ln.	Littlebury Park Dr.	Jeremiah Cherry Tr.	141.45'			
9	Cherry Jack Ln.	Jeremiah Cherry Tr.	Sarah Bee Ln.	472.49'			
10	Cherry Jack Ln.	Sarah Bee Ln.	Pantall Rd.	1331.92'			

Know what's below.

Call before you dig.

SCALE: 1"= 50'

Thompson Station,

DRAWN: MLG

CHECKED:

FILE NAME:

SCALE:

17224LittleberryPrelim

1"=50'

Legend:

HANDICAP RAMP SYMBOL

VAN ACCESSIBLE IANDICAP DESIGNATIO

PROPOSED SIGN POS

CONCRETE BOLLARD

WHEEL STOP

CONCRETE SIDEWALK

EXTRUDED CURB

CURB & GUTTER

TRAFFIC ARROW

EXIST. CONCRETE MONUMENT

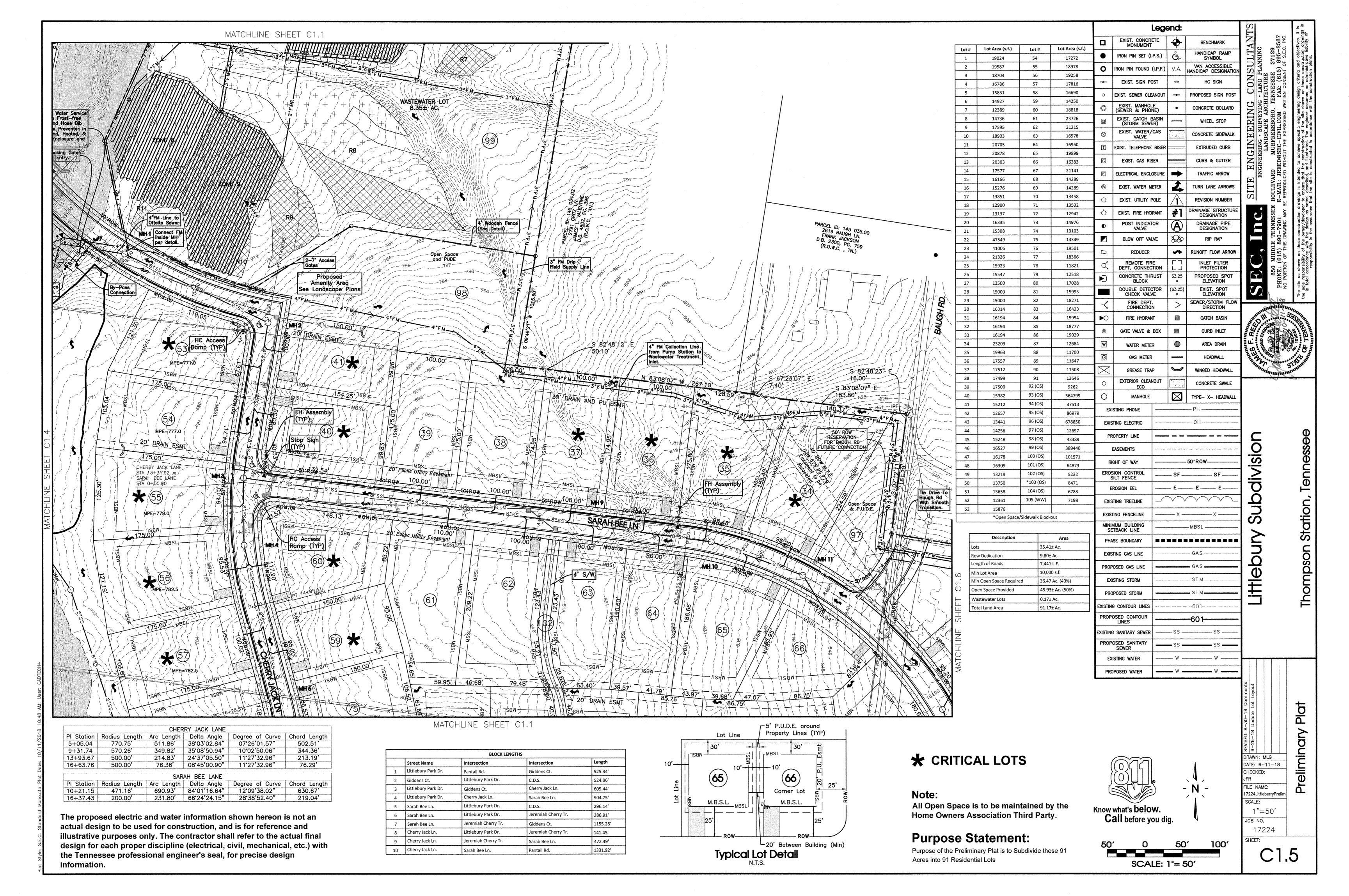
IRON PIN SET (I.P.S.)

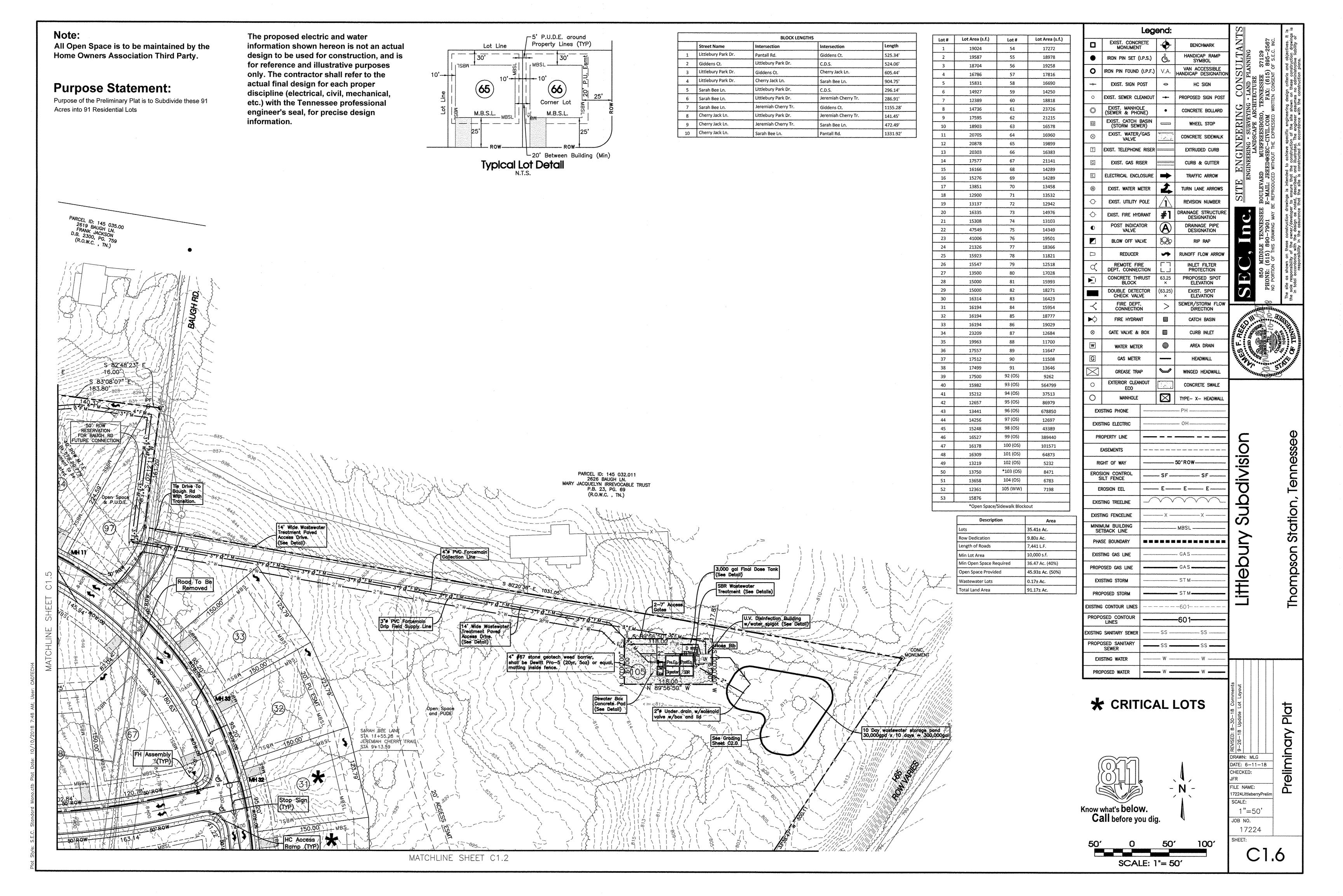
O IRON PIN FOUND (I.P.F.) V.A.

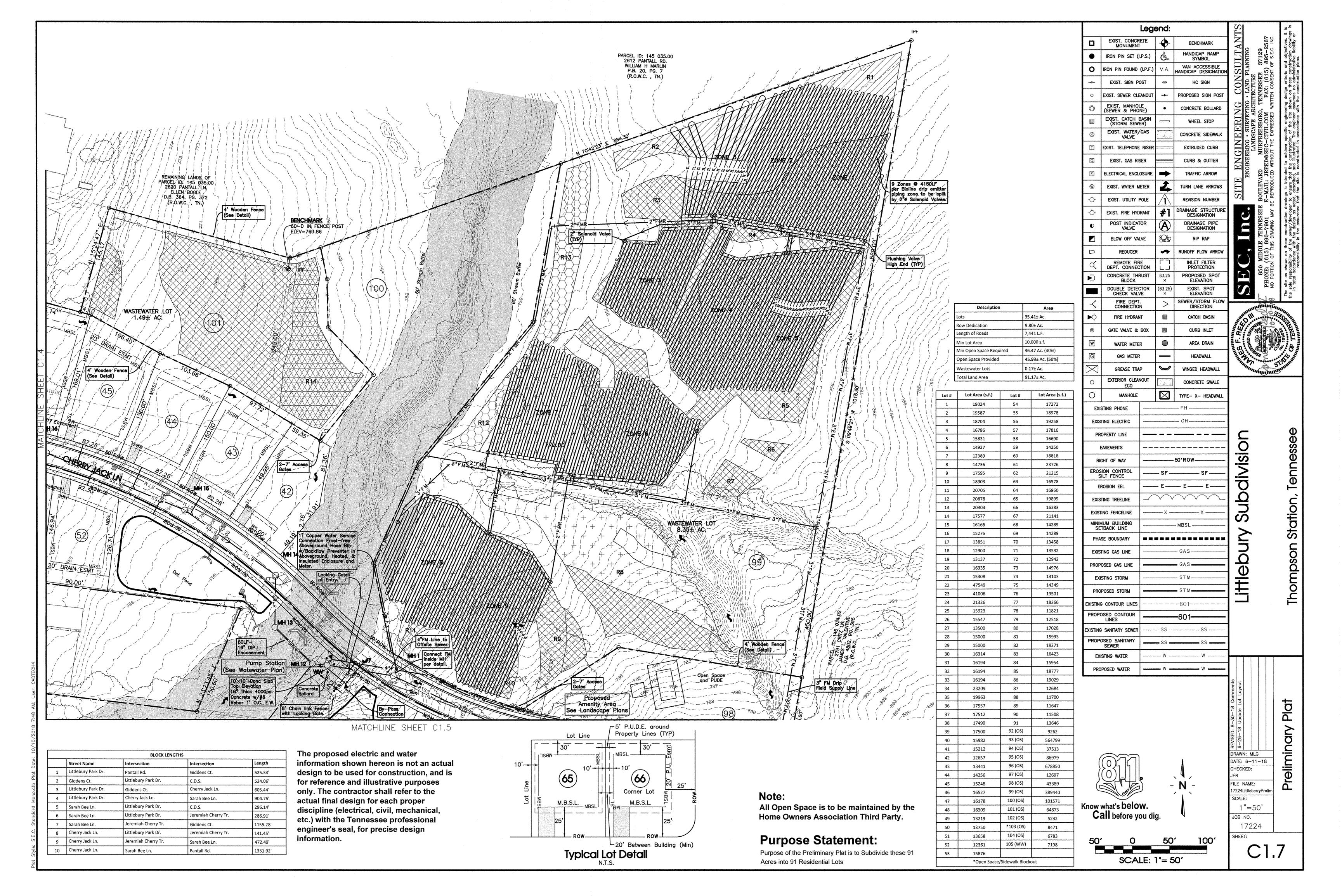
EXIST. SIGN POST

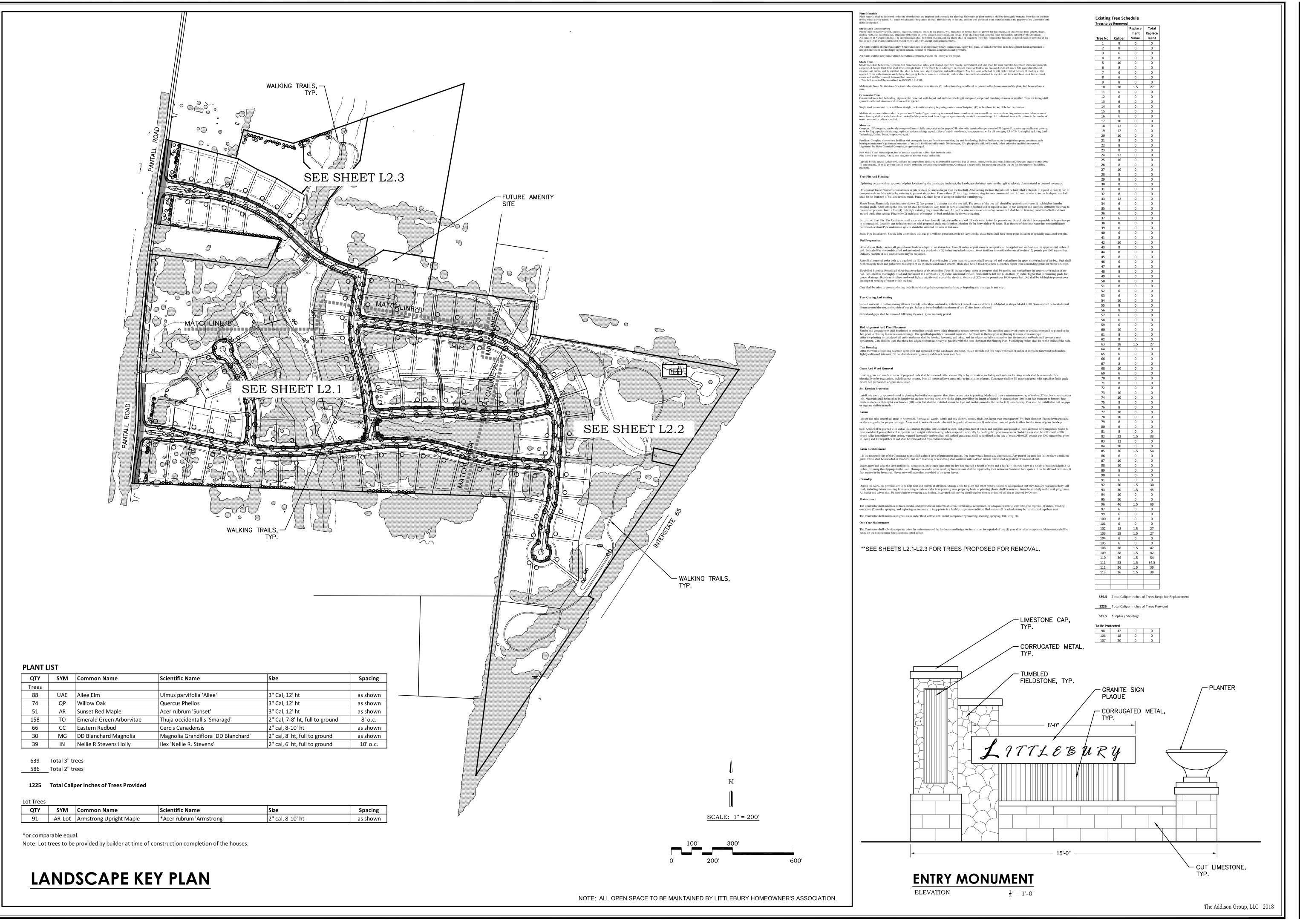
O EXIST. SEWER CLEANOUT

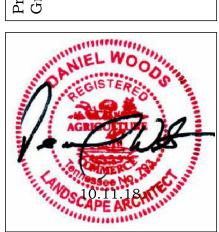
EXIST. MANHOLE (SEWER & PHONE)

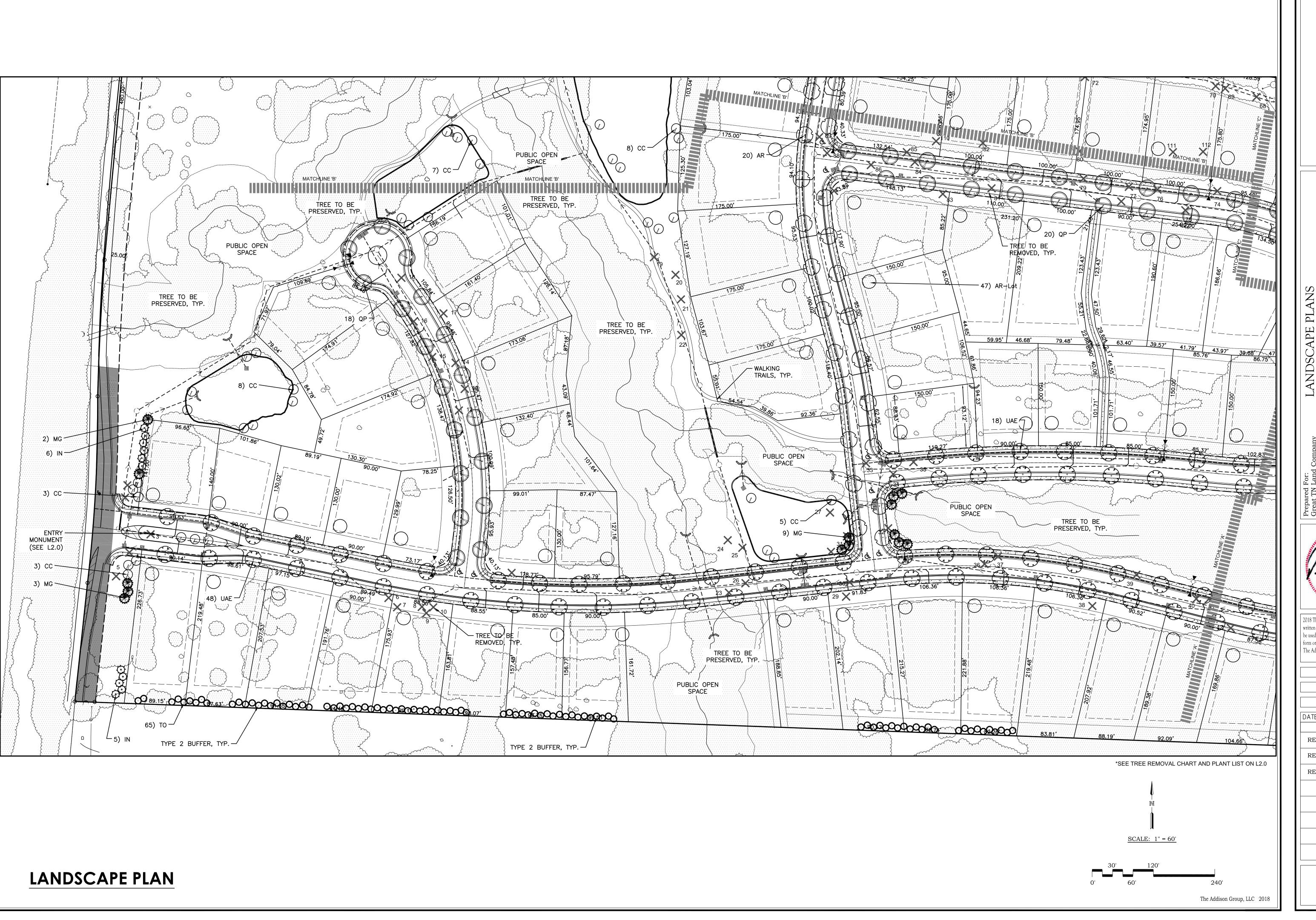

EXIST. CATCH BASIN (STORM SEWER)


EXIST. WATER/GAS VALVE


EXIST. TELEPHONE RISER


EXIST. GAS RISER

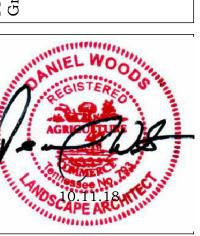

ELECTRICAL ENCLOSURE



2018 The Addison Group LLC Drawings, written material, and design concepts shall no be used or reproduced in whole or part in any form or format without prior written consent of The Addison Group, LLC

DATE: 07.20.18 **REVISIONS:**

REV 09.07.18 REV 10.02.18

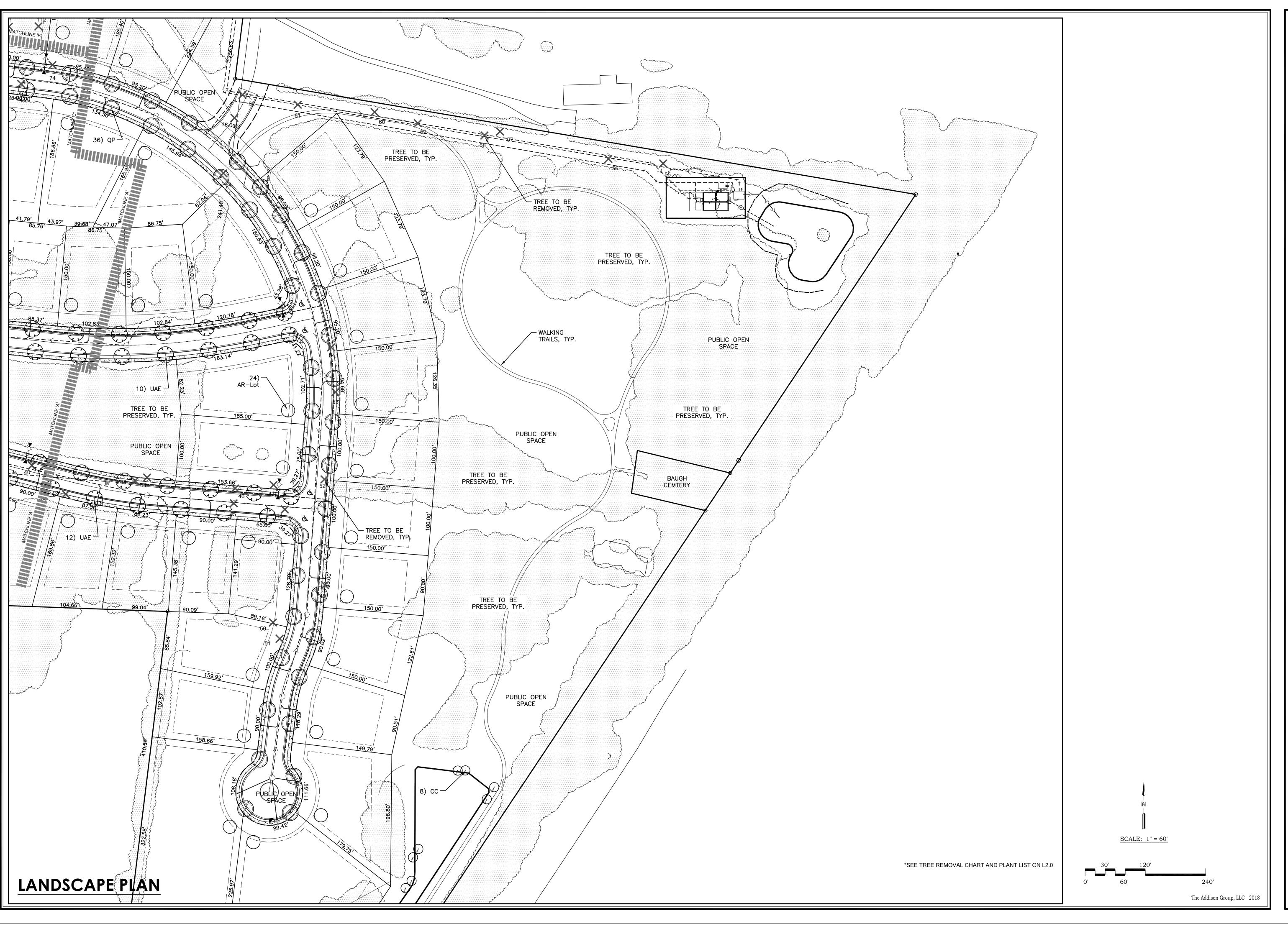

REV 10.11.18

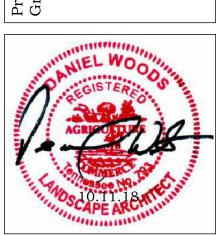
headdisongroup

(TLEBUR)

ared For: .t TN Land Company

2018 The Addison Group LLC Drawings, written material, and design concepts shall not be used or reproduced in whole or part in any form or format without prior written consent of The Addison Group, LLC

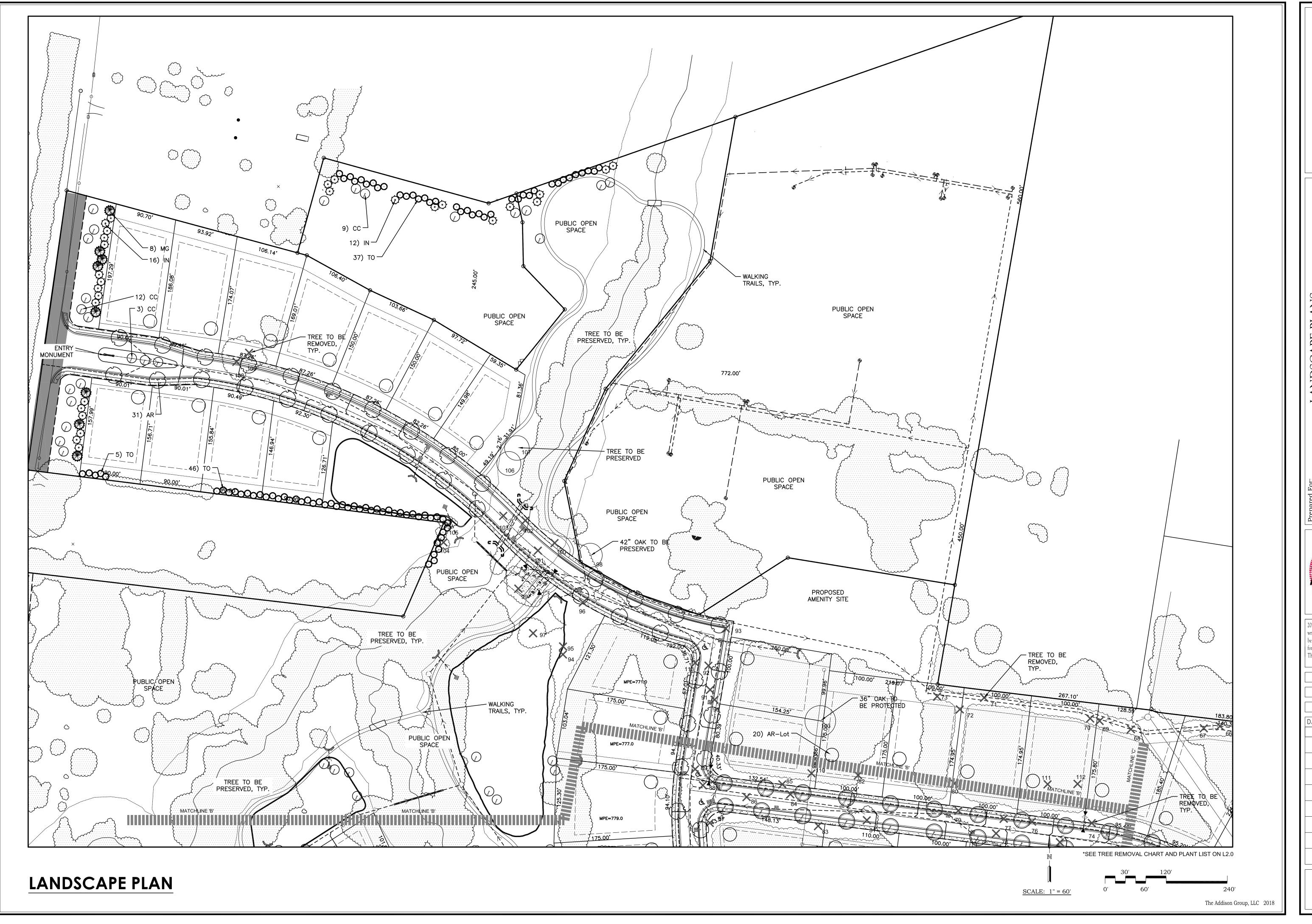

DATE: 07.20.18

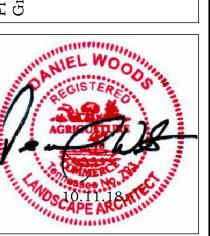

REVISIONS:

REV 09.07.18

REV 10.02.18

REV 10.11.18




2018 The Addison Group LLC Drawings, written material, and design concepts shall not be used or reproduced in whole or part in any form or format without prior written consent of The Addison Group, LLC

DATE: 07.20.18 **REVISIONS:**

REV 09.07.18 REV 10.02.18

REV 10.11.18

2018 The Addison Group LLC Drawings, written material, and design concepts shall not be used or reproduced in whole or part in any form or format without prior written consent of The Addison Group, LLC

DATE: 07.20.18 **REVISIONS:**

REV 09.07.18 REV 10.02.18

REV 10.11.18

F i s c h b a c h Transportation Group, LLC Traffic Engineering and Planning

Traffic Impact Study

Littlebury
Pantall Road
Thompson's Station, TN

Prepared January 2018 (Revised September 2018) For Great Tennessee Land Company

FTG, LLC P.O. Box 682736 Franklin, TN 37068 (615) 771-8022 phone Gillian@FTGtraffic.com

Traffic Impact Study

Littlebury Pantall Road

Thompson's Station, Tennessee

Prepared January 2018 (Revised September 2019)

PREPARED FOR:

Great Tennessee Land Company 7123 Crossroads Blvd, Suite E Brentwood, TN 37027

PREPARED BY:

Ms. Gillian L. Fischbach, P.E., PTOE Fischbach Transportation Group (FTG, LLC) P.O. Box 682736 Franklin, TN 37068 Phone: (615) 771-8022

FTG Project Number: 10886

Table of Contents

1.	INTRODUCT	TION	4
2.	PROJECT DE	ESCRIPTION	5
	FIGURE 1.	LOCATION OF THE PROJECT SITE	6
	FIGURE 2.	CURRENT PROJECT SITE PLAN	7
3.	EXISTING C	ONDITIONS	8
	3.1 REGION	IAL AND LOCAL ACCESS	8
	FIGURE 3.	EXISTING LANEAGE WITHIN THE STUDY AREA	9
	3.2 EXISTIN	NG TRAFFIC VOLUMES	10
	FIGURE 4A.	EXISTING WEEKDAY PEAK HOUR TRAFFIC VOLUMES	13
	FIGURE 4B.	EXISTING SATURDAY PEAK HOUR TRAFFIC VOLUMES	14
	TABLE 1.	DESCRIPTIONS OF LOS FOR SIGNALIZED INTERSECTIONS	15
	TABLE 2.	DESCRIPTIONS OF LOS FOR UNSIGNALIZED INTERSECTIONS	16
	TABLE 3A.	EXISTING WEEKDAY PEAK HOUR LEVELS OF SERVICE	17
	TABLE 3B.	EXISTING SATURDAY PEAK HOUR LEVELS OF SERVICE	20
4.	PROJECTION	N OF BACKGROUND TRAFFIC VOLUMES	23
	FIGURE 5A.	PEAK HOUR TRAFFIC GENERATED BY OTHER PROJECTS	27
	FIGURE 5B.	BACKGROUND WEEKDAY PEAK HOUR TRAFFIC VOLUMES	28
	FIGURE 5C.	BACKGROUND SATURDAY PEAK HOUR TRAFFIC VOLUMES	29
	TABLE 4A.	BACKGROUND WEEKDAY PEAK HOUR LEVELS OF SERVICE	30
	TABLE 4B.	BACKGROUND SATURDAY PEAK HOUR LEVELS OF SERVICE	35
5.	IMPACTS OF	F PROPOSED DEVELOPMENT	40
	5.1 TRIP GE	ENERATION	40
	TABLE 5A.	WEEKDAY TRIP GENERATION FOR THE PROPOSED PROJECT	40
	TABLE 5B.	SATURDAY TRIP GENERATION FOR THE PROPOSED PROJECT	40
	5.2 TRIP DI	STRIBUTION AND TRAFFIC ASSIGNMENT	41
	FIGURE 6.	DIRECTIONAL DISTRIBUTION OF SITE-GENERATED TRAFFIC	42
	FIGURE 7A.	ASSIGNMENT OF SITE-GENERATED WEEKDAY TRAFFIC	43
	FIGURE 7B.	ASSIGNMENT OF SITE-GENERATED SATURDAY TRAFFIC	44
	5.3 CAPACI	TY ANALYSES	45
	FIGURE 8A.	TOTAL PROJECTED WEEKDAY PEAK HOUR TRAFFIC VOLUMES	46
	FIGURE 8B.	TOTAL PROJECTED SATURDAY PEAK HOUR TRAFFIC VOLUMES.	47

	TABLE 6A.	TOTAL WEEKDAY PEAK HOUR LEVELS OF SERVICE	48
	TABLE 6B.	TOTAL SATURDAY PEAK HOUR LEVELS OF SERVICE	53
6.	CRASH DAT	TA ON THE ROADWAYS WITHIN THE STUDY AREA	58
	TABLE 7.	SUMMARY OF RECENT CRASH DATA WITHIN THE STUDY AREA.	58
7.	CONCLUSIONS AND RECOMMENDATIONS		59
	APPENDIX A		62
	APPENDIX B		71
	APPENDIX C		195
	APPENDIX I	D	197
	APPENDIX I	3	202

1. INTRODUCTION

This traffic study has been prepared in order to identify the traffic impacts of a residential project that is proposed to be constructed on the east side of Pantall Road, south of Critz Lane, in Thompson's Station, Tennessee.

For the purposes of this study, existing and background traffic volumes were established, and capacity analyses were conducted for these conditions. Trip generation calculations were performed, and the trips which are expected to be generated by the proposed project were distributed to the roadway system. The site-generated trips were added to the background traffic volumes, and the intersections which provide access to the site were then evaluated to determine the traffic impacts of the proposed project. Access needs for the project were evaluated, and the necessary roadway and/or traffic control improvements were identified. This report presents the results of these analyses and the subsequent recommendations.

2. PROJECT DESCRIPTION

The location of the proposed project is shown in Figure 1. As shown, the project site is located on the east side of Pantall Road, south of Critz Lane, in Thompson's Station, Tennessee.

The current site plan for the proposed project is shown in Figure 2. Currently, the project site is undeveloped, and the developer of the proposed project plans to construct 92 single-family homes. Access to these homes will be provided at two locations on Pantall Road.

In large part, economic and market considerations will dictate the pace and timing with which the proposed project is actually completed. For the purposes of this study, it was assumed that the entire proposed project will be completed by Year 2020.

F i s c h b a c h Transportation Group, LLC

Traffic Engineering and Planning

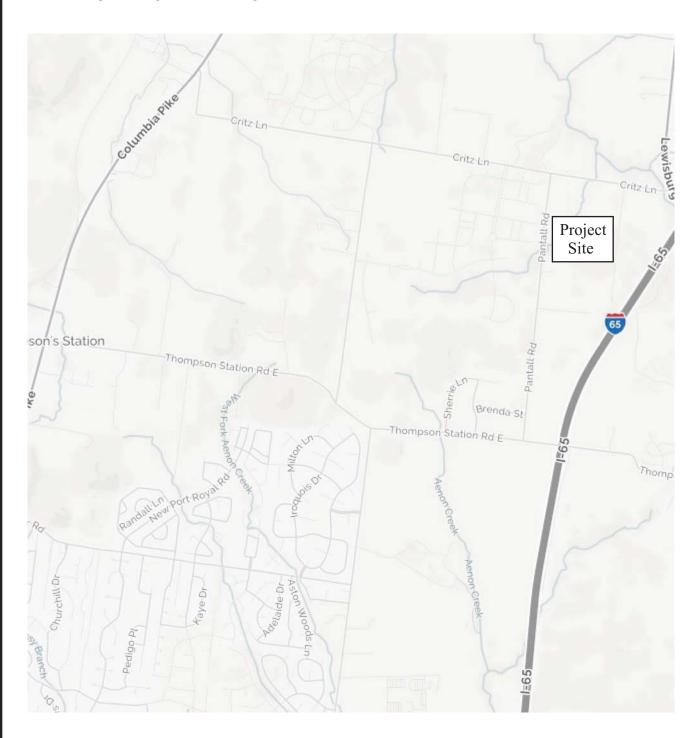
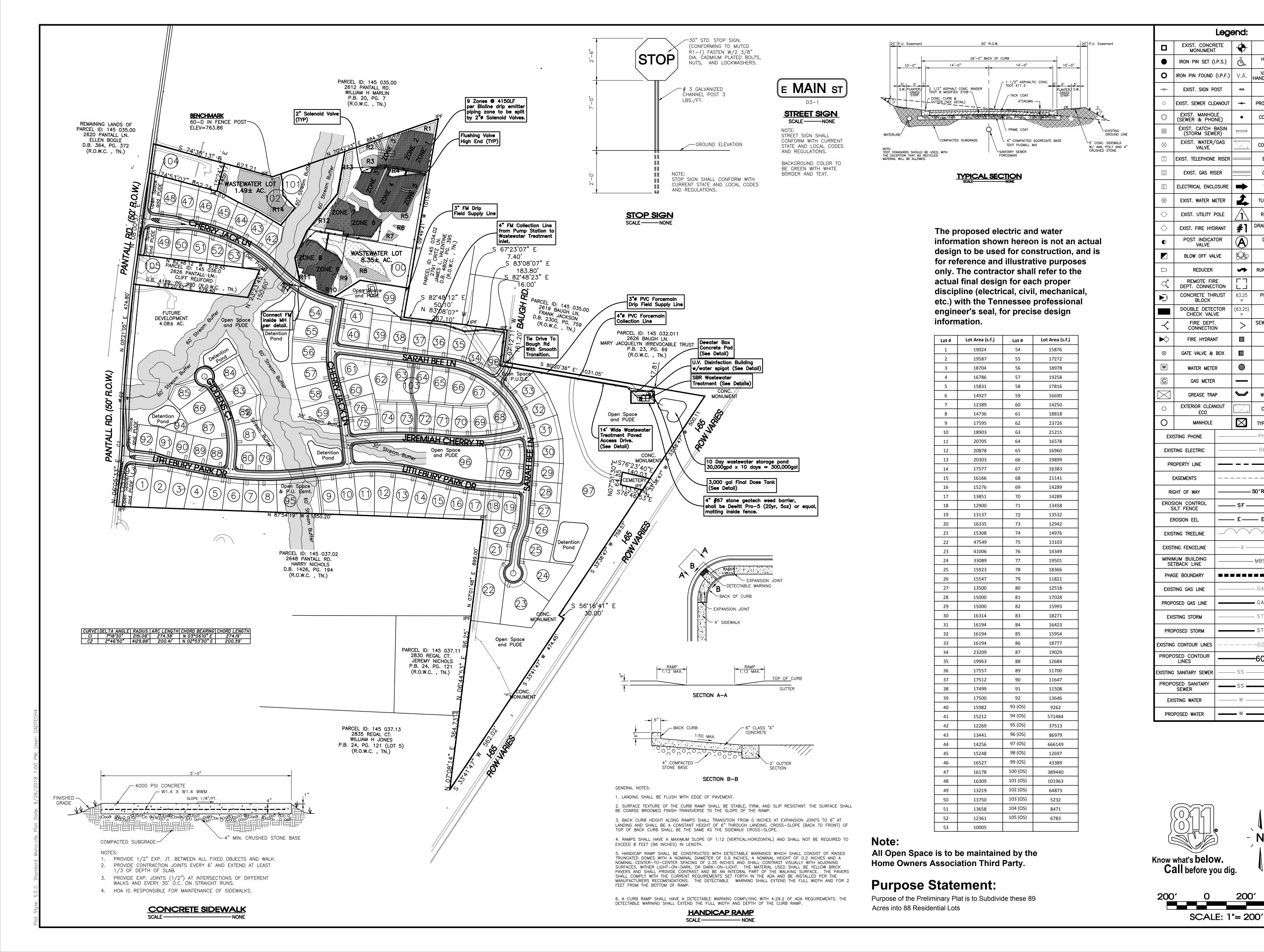



Figure 1. Location of the Proposed Project Site

HANDICAP RAMP

SYMBOL VAN ACCESSIBLE

HANDICAP DESIGNATION

HC SIGN

PROPOSED SIGN POST

CONCRETE BOLLARD

WHEEL STOP

CONCRETE SIDEWALK

EXTRUDED CURB

CURB & GUTTER

TRAFFIC ARROW

TURN LANE ARROWS

REVISION NUMBER

DRAINAGE STRUCTURE DESIGNATION

DRAINAGE PIPE

DESIGNATION

RIP RAP

RUNOFF FLOW ARROW

PROTECTION

PROPOSED SPOT ELEVATION

EXIST. SPOT

ELEVATION

SEWER/STORM FLO

DIRECTION

CATCH BASIN

CURB INLET

HEADWALL

WINGED HEADWALL

CONCRETE SWALE

TYPE- X- HEADWAL

- - - - - - - - - - - - - - - - - - -

-50'ROW-

— Е—— Е—— Е

ssee

Station,

S

DRAWN: MLG

CHECKED:

FILE NAME:

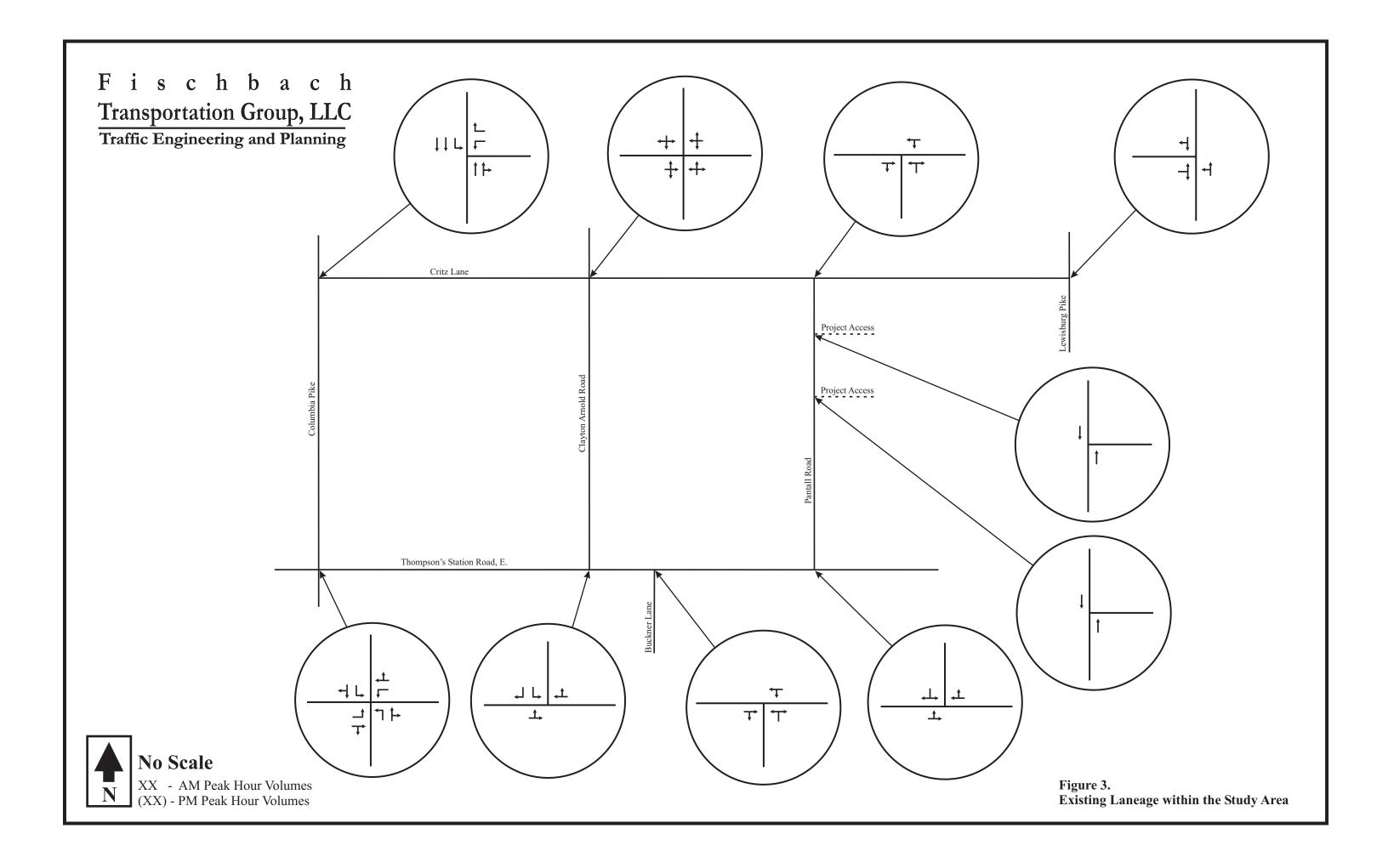
SCALE:

400'

ATE: 6-11-18

7224LittleberryPrelim

1"=200'


17224

63.25

3. EXISTING CONDITIONS

3.1 REGIONAL AND LOCAL ACCESS

Pantall Road provides regional and local access to the project site. This facility is a two-lane collector roadway that provides a north-south connection between Critz Lane and Thompson's Station, E. According to the data compiled by the Tennessee Department of Transportation (TDOT) within their E-TRIMS database, Pantall Road includes a right-of-way that is currently 52 feet wide. Based on field measurements, this segment of Pantall Road is approximately 20 feet wide and includes one travel lane in each direction. Currently, a 40 mph speed limit is posted on Pantall Road in the vicinity of the project site. The existing laneage at the intersections within the study area is shown in Figure 3.

3.2 EXISTING TRAFFIC VOLUMES

In order to provide data for the traffic impact analysis, peak hour traffic volumes were identified for the following intersections:

- Columbia Pike and Critz Lane
- Critz Lane and Clayton Arnold Road / Paddock Park Drive
- Critz Lane and Pantall Road
- Lewisburg Pike and Critz Lane
- Thompson's Station Road, E. and Pantall Road
- Thompson's Station Road, E. and Buckner Lane
- Thompson's Station Road, E. and Clayton Arnold Road
- Columbia Pike and Thompson's Station Road

Specifically, peak hour traffic counts were collected from 6:00-9:00 AM and 4:00-7:00 PM on typical weekdays and 2:00-7:00 PM on typical Saturdays in September 2018. The traffic count worksheets are included in Appendix A, and the existing peak hour traffic volumes are shown in Figures 4A and 4B.

Using the existing peak hour traffic volumes shown in Figures 4A and 4B, capacity analyses were conducted for the intersection studied. Specifically, in order to identify current peak hour levels of operation within the study area, the capacity calculations were performed according to the methods outlined in the Highway Capacity Manual 2010 (HCM2010). These analyses result in the determination of a Level of Service (LOS), which is a measure of evaluation is used to describe how well an intersection or roadway operates. LOS A represents free flow traffic operations, and LOS F suggests that the traffic demand exceeds the available capacity. In an urbanized area, LOS D is typically considered to be the minimum acceptable LOS. Table 1 presents the descriptions of LOS for signalized intersections, and Table 2 presents the descriptions of LOS for unsignalized intersections.

The results of the capacity analyses for the existing peak hour traffic volumes are shown in Tables 3A and 3B, and Appendix B includes the capacity analyses worksheets. The capacity analyses indicate the following:

Columbia Pike and Critz Lane

Under current signalized conditions, the intersection of Columbia Pike and Critz Lane operates at LOS C during the AM peak hour and LOS B during the weekday PM peak hour. Also, additional analyses were conducted in order to identify how well this intersection would operate if a second westbound right turn lane were provided. The additional analyses indicate that a second westbound right turn lane would improve the overall LOS and reduce the westbound vehicle delays and queues during the weekday AM peak hour.

This intersection operates acceptably during the Saturday peak hour.

Critz Lane and Clayton Arnold Road / Paddock Park Drive

With existing two-way stop conditions and existing laneage at this intersection, most of the critical turning movements operate at LOS C or better during both peak hours. However, the northbound turning movements operate at LOS F during the weekday AM peak hour, during the peak hour of operations for the elementary and middle school located on the east side of Clayton Arnold Road, south of Critz Lane.

All of the critical turning movements at this intersection operate acceptably during the Saturday peak hour.

Critz Lane and Pantall Road

With existing stop conditions on Pantall Road and existing laneage at this intersection, all of the critical turning movements operate at LOS B or better during both weekday peak hours.

All of the critical turning movements at this intersection operate acceptably during the Saturday peak hour.

Lewisburg Pike and Critz Lane

Under existing unsignalized conditions, and with the existing laneage at this intersection, the eastbound left and right turns operate at LOS F during both weekday peak hours, with significant vehicle delays and queues.

All of the critical turning movements at this intersection operate acceptably during the Saturday peak hour.

Thompson's Station Road, E. and Pantall Road

With existing stop conditions on Pantall Road and existing laneage at this intersection, all of the critical turning movements operate at LOS B or better during both weekday peak hours.

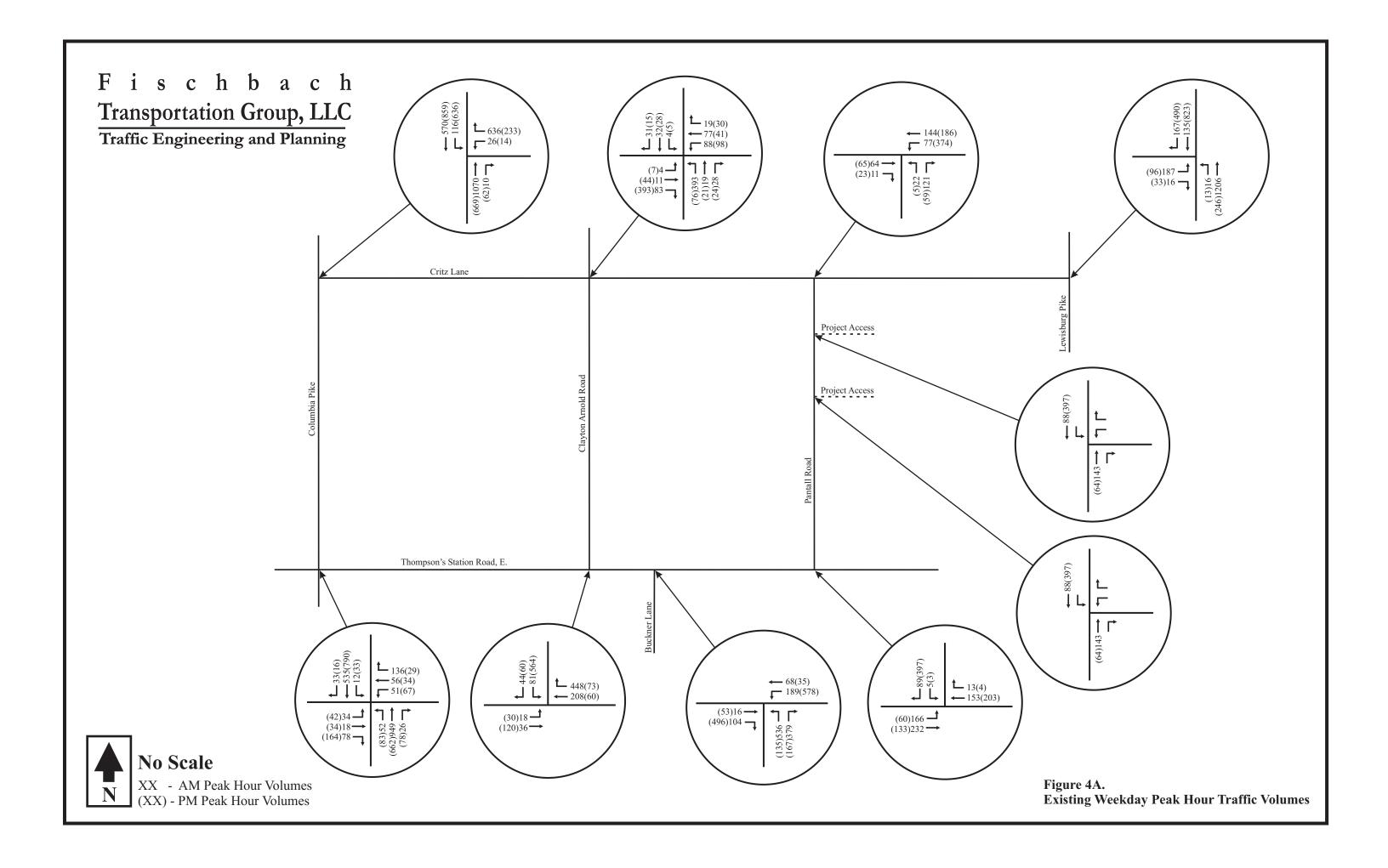
All of the critical turning movements at this intersection operate acceptably during the Saturday peak hour.

Thompson's Station Road, E. and Buckner Lane

With existing signalized conditions and existing laneage at this intersection, the westbound and/or northbound turning movements operate poorly during both weekday peak hours. Specifically, these conditions occur because no dedicated turn lanes are provided on either Thompson's Station Road, E. or Buckner Lane at this location.

This intersection operates acceptably during the Saturday peak hour.

Thompson's Station Road, E. and Clayton Arnold Road


With existing stop conditions on Clayton Arnold Road and existing laneage at this intersection, most of the critical turning movements operate at LOS B or better during both weekday peak hours. However, the southbound left turns operate poorly during the PM peak hour.

All of the critical turning movements at this intersection operate acceptably during the Saturday peak hour.

Columbia Pike and Thompson's Station Road

With existing signalized conditions and existing laneage at this intersection, the intersection of Columbia Pike and Thompson's Station Road currently operates at LOS C during both weekday peak hours.

This intersection operates acceptably during the Saturday peak hour.

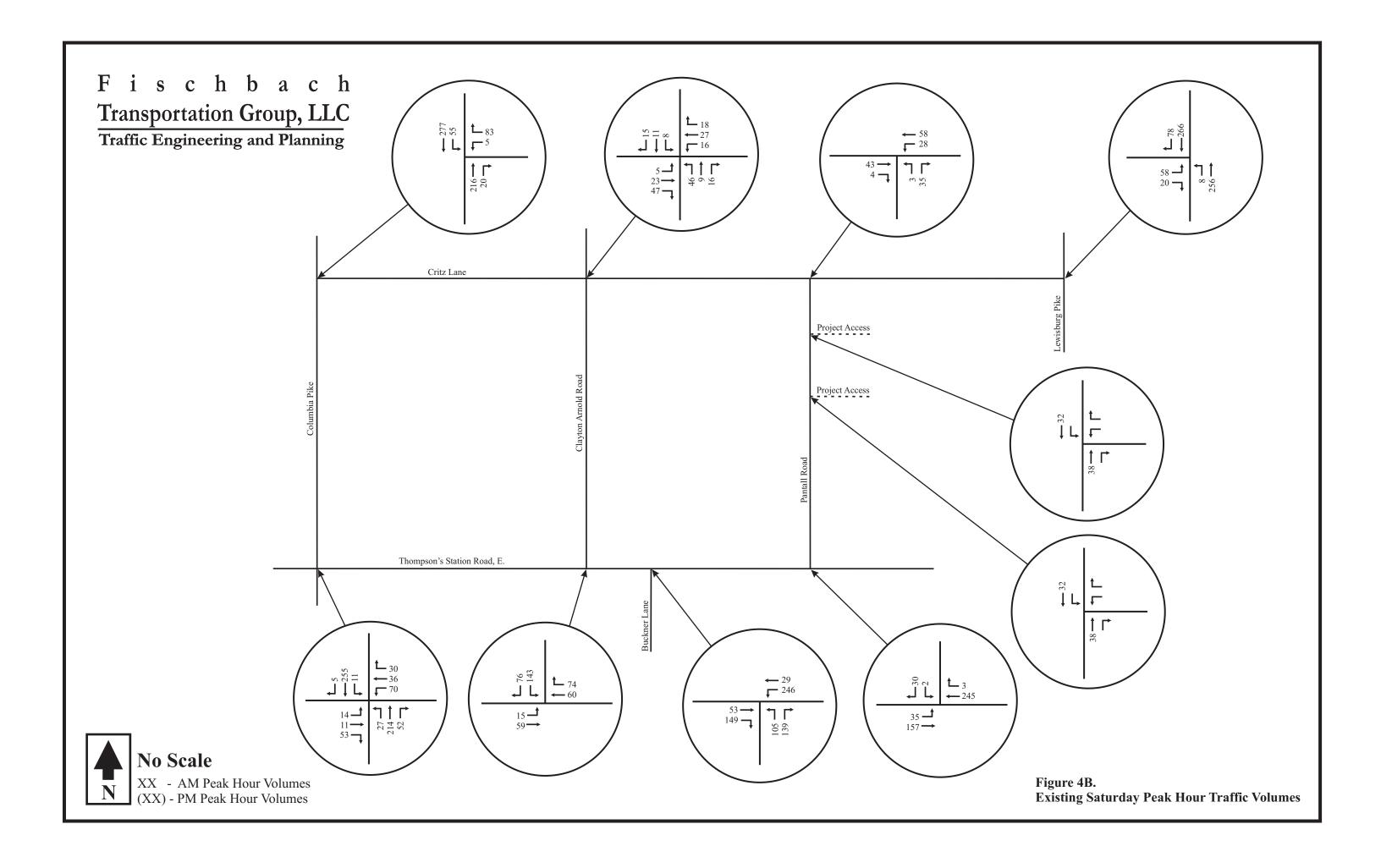


TABLE 1. DESCRIPTIONS OF LOS FOR SIGNALIZED INTERSECTIONS

Level of Service	Description	Average Control Delay per Vehicle (sec)
A	Operations with very low control delay. Progression is extremely favorable, and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.	<u>≤</u> 10
В	Operations with stable flows. This generally occurs with good progression, short cycle lengths, or both. More vehicles stop than for LOS A, causing higher levels of average delay.	> 10 and ≤ 20
С	Operations with stable flow. Occurs with fair progression, longer cycle lengths, or both. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant, although many still pass through the intersection without stopping.	> 20 and ≤ 35
D	Approaching unstable flow. The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high v/c ratios. Many vehicles stop.	$> 35 \text{ and} \le 55$
E	Unstable flow. In many cases, this is considered to be the limit for acceptable delay. These high delays generally indicate poor progression, long cycle lengths, and high v/c ratios.	$> 55 \text{ and} \le 80$
F	Unacceptable delay. This condition often occurs with oversaturation or with high v/c ratios. Poor progression and long cycle lengths may also cause such delay levels.	> 80

Source: Highway Capacity Manual 2010 (HCM2010)

TABLE 2. DESCRIPTIONS OF LOS FOR UNSIGNALIZED INTERSECTIONS

Level of Service	Description	Average Control Delay (sec/veh)
A	Minimal delay	<u>≤</u> 10
В	Brief delay	> 10 and ≤ 15
С	Average delay	> 15 and ≤ 25
D	Significant delay	> 25 and ≤ 35
E	Long delay	$> 35 \text{ and} \le 50$
F	Extreme delay	> 50

Source: Highway Capacity Manual 2010 (HCM 2010)

TABLE 3A. EXISTING WEEKDAY PEAK HOUR LEVELS OF SERVICE

	TURNING	AM PEA	K HOUR	PM PEA	K HOUR
INTERSECTION	MOVEMENT	LEVEL OF SERVICE	95 th %-ILE QUEUE	LEVEL OF SERVICE	95 th %-ILE QUEUE
	Westbound Left Turns	LOS B	1 veh (18 sec/veh)	LOS D	1 veh (40 sec/veh)
	Westbound Right Turns	LOS D	24 veh (47 sec/veh)	LOS C	8 veh (28 sec/veh)
Columbia Pike and	Northbound Thrus	LOS D	19 veh (39 sec/veh)	LOS B	8 veh (14 sec/veh)
Critz Lane (with existing	Northbound Right Turns	LOS D	19 veh (39 sec/veh)	LOS B	8 veh (14 sec/veh)
conditions)	Southbound Left Turns	LOS C	3 veh (23 sec/veh)	LOS B	12 veh (17 sec/veh)
	Southbound Thrus	LOS B	7 veh (15 sec/veh)	LOS A	2 veh (3 sec/veh)
	OVERALL INTERSECTION	LOS C (34 sec/veh)		LOS B (12 sec/veh)	
	Westbound Left Turns	LOS C	1 veh (20 sec/veh)	LOS D	1 veh (40 sec/veh)
	Westbound Right Turns	LOS C	9 veh (32 sec/veh)	LOS C	4 veh (26 sec/veh)
Columbia Pike and	Northbound Thrus	LOS B	11 veh (19 sec/veh)	LOS B	8 veh (14 sec/veh)
Critz Lane (with existing	Northbound Right Turns	LOS B	11 veh (19 sec/veh)	LOS B	8 veh (14 sec/veh)
conditions)	Southbound Left Turns	LOS B	1 veh (13 sec/veh)	LOS B	12 veh (17 sec/veh)
	Southbound Thrus	LOS A	2 veh (6 sec/veh)	LOS A	2 veh (3 sec/veh)
	OVERALL INTERSECTION	LOS B (1	9 sec/veh)	LOS B (12 sec/veh)	

	Eastbound Turning Movements	LOS A	0 veh (7 sec/veh)	LOS A	0 veh (7 sec/veh)
Critz Lane and Clayton Arnold Road / Paddock	Westbound Turning Movements	LOS A	1 veh (8 sec/veh)	LOS A	1 veh (9 sec/veh)
Park Drive (with existing conditions)	Northbound Turning Movements	LOS F	15 veh (81 sec/veh)	LOS C	1 veh (18 sec/veh)
	Southbound Turning Movements	LOS B	1 veh (12 sec/veh)	LOS C	1 veh (16 sec/veh)
Critz Lane and Pantall Road	Westbound Left Turns / Thrus	LOS A	1 veh (8 sec/veh)	LOS A	1 veh (8 sec/veh)
(with existing conditions)	Northbound Left and Right Turns	LOS B	1 veh (10 sec/veh)	LOS B	1 veh (11 sec/veh)
Lewisburg Pike and Critz Lane	Eastbound Left and Right Turns	LOS F	16 veh (392 sec/veh)	LOS F	5 veh (65 sec/veh)
(with existing conditions)	Northbound Left Turns / Thrus	LOS A	0 veh (8 sec/veh)	LOS B	1 veh (12 sec/veh)
Thompson's Station Road, E. and Pantall Road	Eastbound Left Turns / Thrus	LOS A	1 veh (8 sec/veh)	LOS A	1 veh (8 sec/veh)
(with existing conditions)	Southbound Left and Right Turns	LOS B	1 veh (11 sec/veh)	LOS B	3 veh (14 sec/veh)
	Eastbound Thrus / Right Turns	LOS C	4 veh (29 sec/veh)	LOS B	13 veh (11 sec/veh)
Thompson's Station Road, E. and	Westbound Left Turns / Thrus	LOS E	13 veh (60 sec/veh)	LOS F	53 veh (141 sec/veh)
Buckner Lane (with existing conditions)	Northbound Left and Right Turns	LOS C	28 veh (33 sec/veh)	LOS E	18 veh (64 sec/veh)
	OVERALL INTERSECTION	LOS D (3	88 sec/veh)	LOS E (7	/6 sec/veh)
Thompson's Station Road, E. and Clayton Arnold Road (with existing conditions)	Eastbound Left Turns / Thrus	LOS A	1 veh (9 sec/veh)	LOS A	1 veh (8 sec/veh)
	Southbound Left Turns	LOS B	1 veh (14 sec/veh)	LOS E	11 veh (38 sec/veh)
	Southbound Right Turns	LOS B	1 veh (12 sec/veh)	LOS A	1 veh (9 sec/veh)

	Eastbound Left Turns	LOS D	2 veh (44 sec/veh)	LOS D	2 veh (42 sec/veh)
	Eastbound Thrus / Right Turns	LOS D	5 veh (49 sec/veh)	LOS D	10 veh (54 sec/veh)
	Westbound Left Turns	LOS D	3 veh (43 sec/veh)	LOS D	3 veh (43 sec/veh)
Columbia Pike and	Westbound Thrus / Right Turns	LOS D	10 veh (54 sec/veh)	LOS D	3 veh (45 sec/veh)
Thompson's Station Road (with existing	Northbound Left Turns	LOS B	1 veh (11 sec/veh)	LOS B	2 veh (18 sec/veh)
conditions)	Northbound Thrus / Right Turns	LOS C	34 veh (31 sec/veh)	LOS C	22 veh (22 sec/veh)
	Southbound Left Turns	LOS C	1 veh (22 sec/veh)	LOS B	1 veh (15 sec/veh)
	Southbound Thrus / Right Turns	LOS B	15 veh (17 sec/veh)	LOS C	26 veh (26 sec/veh)
	OVERALL INTERSECTION	LOS C (30 sec/veh)		LOS C (2	28 sec/veh)

TABLE 3B. EXISTING SATURDAY PEAK HOUR LEVELS OF SERVICE

	TURNING	AFTERNO	AFTERNOON PEAK		
INTERSECTION	MOVEMENT	LEVEL OF SERVICE	95 th %-ILE QUEUE		
	Westbound Left Turns	LOS C	1 veh (21 sec/veh)		
	Westbound Right Turns	LOS B	1 veh (19 sec/veh)		
Columbia Pike and	Northbound Thrus	LOS A	1 veh (7 sec/veh)		
Critz Lane (with existing	Northbound Right Turns	LOS A	1 veh (7 sec/veh)		
conditions)	Southbound Left Turns	LOS A	1 veh (5 sec/veh)		
	Southbound Thrus	LOS A	1 veh (3 sec/veh)		
	OVERALL INTERSECTION	LOS A (7 sec/veh)			
	Westbound Left Turns	LOS C	1 veh (21 sec/veh)		
	Westbound Right Turns	LOS B	1 veh (19 sec/veh)		
Columbia Pike and	Northbound Thrus	LOS A	1 veh (7 sec/veh)		
Critz Lane (with existing	Northbound Right Turns	LOS A	1 veh (7 sec/veh)		
conditions)	Southbound Left Turns	LOS A	1 veh (5 sec/veh)		
	Southbound Thrus	1 108 4			
	OVERALL INTERSECTION	LOS A (7 sec/veh)		

	Eastbound Turning Movements	LOS A	0 veh (7 sec/veh)
Critz Lane and Clayton Arnold Road / Paddock	Westbound Turning Movements	LOS A	0 veh (7 sec/veh)
Park Drive (with existing conditions)	Northbound Turning Movements	LOS A	1 veh (10 sec/veh)
,	Southbound Turning Movements	LOS A	1 veh (9 sec/veh)
Critz Lane and Pantall Road	Westbound Left Turns / Thrus	LOS A	1 veh (7 sec/veh)
(with existing conditions)	Northbound Left and Right Turns	LOS A	1 veh (9 sec/veh)
Lewisburg Pike and Critz Lane	Eastbound Left and Right Turns	LOS B	1 veh (13 sec/veh)
(with existing conditions)	Northbound Left Turns / Thrus LOS A		0 veh (8 sec/veh)
Thompson's Station Road, E. and Pantall	Eastbound Left Turns / Thrus	LOS A	1 veh (8 sec/veh)
Road (with existing conditions)	Southbound Left and Right Turns	LOS B	1 veh (10 sec/veh)
	Eastbound Thrus / Right Turns	LOS A	3 veh (6 sec/veh)
Thompson's Station Road, E. and Buckner Lane	Westbound Left Turns / Thrus	LOS A	6 veh (9 sec/veh)
(with existing conditions)	Northbound Left and Right Turns	LOS E	15 veh (66 sec/veh)
	OVERALL INTERSECTION	LOS C (2	27 sec/veh)
Thompson's Station Road, E. and	Eastbound Left Turns / Thrus	LOS A	0 veh (8 sec/veh)
Clayton Arnold Road	Southbound Left Turns	LOS B	1 veh (11 sec/veh)
(with existing conditions)	Southbound Right Turns	LOS A	1 veh (9 sec/veh)

	Eastbound Left Turns	LOS C	1 veh (24 sec/veh)
Columbia Pike and Thompson's Station Road (with existing	Eastbound Thrus / Right Turns	LOS C	2 veh (27 sec/veh)
	Westbound Left Turns	LOS C	2 veh (22 sec/veh)
	Westbound Thrus / Right Turns	LOS C	2 veh (23 sec/veh)
	Northbound Left Turns	LOS A	1 veh (10 sec/veh)
conditions)	Northbound Thrus / Right Turns	LOS B	4 veh (13 sec/veh)
	Southbound Left Turns	LOS B	1 veh (11 sec/veh)
	Southbound Thrus / Right Turns	IOSB	
	OVERALL INTERSECTION	LOS B (16 sec/veh)	

4. PROJECTION OF BACKGROUND TRAFFIC VOLUMES

In order to account for the traffic growth which will occur within the study area because of typical growth, consideration was given to background traffic volumes for the intersections within the study area. Specifically, in order to account for typical growth within the study area, consideration was given to the weekday peak hour traffic volumes that were identified in the Comprehensive Update that was prepared by RPM Transportation Consultants, LLC in September 2015 on behalf of the Town of Thompson's Station. Specifically, Figure 5A identifies the weekday peak hour traffic volumes expected to be generated by the following projects that are planned for construction within the study area:

- The Club at Pleasant Creek
- Bridgemore Village
- Roderick Place
- Canterbury
- Tollgate Farms
- Newport North
- Whistle Stop
- Mars Petcare
- Downtown Thompson's Station
- Former Walmart site
- Commercial Development site adjacent to Lewisburg Pike and Interstate 840

These traffic volumes were established by subtracting the background peak hour traffic volumes identified in the September 2015 Comprehensive Update from the total projected peak hour traffic volumes in the same document. The traffic volumes in Figures 5A were added together in order to establish the background traffic volumes shown in Figure 5B.

It is important to note that the September 2015 Comprehensive Update did not include peak hour traffic data for a typical weekend. Therefore, background traffic volumes for a typical Saturday were estimated by increasing the existing Saturday peak hour traffic volumes by 20%, as shown in Figure 5C.

Using the background peak hour traffic volumes shown in Figures 5B and 5C, capacity analyses were conducted for the intersections studied. For the purposes of these analyses, it was assumed that all existing laneage and traffic control will be maintained, unless otherwise described below.

The results of the capacity analyses for the total projected peak hour traffic volumes are shown in Tables 4A and 4B, and Appendix B includes the capacity analyses worksheets. The capacity analyses indicate the following:

Columbia Pike and Critz Lane

The signalized intersection of Columbia Pike and Critz Lane is expected to operate at LOS F during both weekday peak hours. Also, additional analyses were conducted in order to identify how well this intersection would operate if a second westbound right turn lane were provided. The additional analyses indicate that a second westbound right turn lane would improve the overall LOS and reduce the westbound vehicle delays and queues during the weekday AM peak hour.

This intersection is expected to operate acceptably during the Saturday peak hour.

Critz Lane and Clayton Arnold Road / Paddock Park Drive

With existing two-way stop conditions and existing laneage at this intersection, most of the critical turning movements will operate at LOS D or better during both weekday peak hours. However, the northbound turning movements will operate at LOS F, with significant vehicle delays and queues, during the weekday AM peak hour. Based on these results, additional analyses were conducted in order to identify how well this intersection would operate if it were reconstructed as a single-lane roundabout, as recommended in the 2015 Comprehensive Update prepared by RPM Transportation Consultants, LLC on behalf of the Town of Thompson's Station. The additional analyses indicate that each approach would operate at LOS A during each weekday peak hour under these conditions.

All of the critical turning movements at this intersection are expected to operate acceptably during the Saturday peak hour with either existing conditions or with a single-lane roundabout.

Critz Lane and Pantall Road

With existing stop conditions on Pantall Road and existing laneage at this intersection, most of the critical turning movements will operate at LOS B or better during both weekday peak hours. However, the northbound turning movements will operate at LOS F, with significant vehicle delays and queues, during the weekday PM peak hour. Based on these results, additional analyses were conducted in order to identify how well this intersection would operate if it were reconstructed as a single-lane roundabout, as recommended in the 2015 Comprehensive Update prepared by RPM Transportation Consultants, LLC on behalf of the Town of Thompson's Station. The additional analyses indicate that each approach would operate at LOS B or better during each weekday peak hour under these conditions.

All of the critical turning movements at this intersection are expected to operate acceptably during the Saturday peak hour with either existing conditions or with a single-lane roundabout.

Lewisburg Pike and Critz Lane

The Town of Thompson's Station and the Tennessee Department of Transportation (TDOT) have approved the construction of dedicated turn lanes and a traffic signal at this location. Specifically, a northbound left turn lane, a southbound right turn lane, and separate eastbound

left and right turn lanes will be provided. Under these conditions, the signalized intersection of Lewisburg Pike and Critz Lane will operate at LOS E during the weekday AM peak hour and LOS B during the weekday PM peak hour. Specifically, the eastbound left turns and northbound throughs will experience significant vehicle delays and queues during the AM weekday peak hour. However, no additional improvements to this intersection can be provided without also widening Lewisburg Pike to a four- or five-lane corridor.

This intersection is expected to operate acceptably during the Saturday peak hour.

Thompson's Station Road, E. and Pantall Road

With existing stop conditions on Pantall Road and existing laneage at this intersection, the southbound left and right turns will operate at LOS F during both weekday peak hours, and the vehicle delays and queues are expected to be particularly significant during the weekday PM peak hour. Based on these results, additional analyses were conducted in order to identify how well this intersection would operate if an eastbound left turn lane and a traffic signal were provided at this intersection, as recommended in the 2015 Comprehensive Update prepared by RPM Transportation Consultants, LLC on behalf of the Town of Thompson's Station. The results of these additional analyses indicate that, under with these improvements, the intersection of Thompson's Station Road, E. and Pantall Road would operate at LOS B during the weekday AM peak hour and LOS D during the weekday PM peak hour. Further analyses were conducted in order to identify how well this intersection would operate if it were reconstructed as a single-lane roundabout. The additional analyses indicate that each approach would operate at LOS C or better during each weekday peak hour under these conditions.

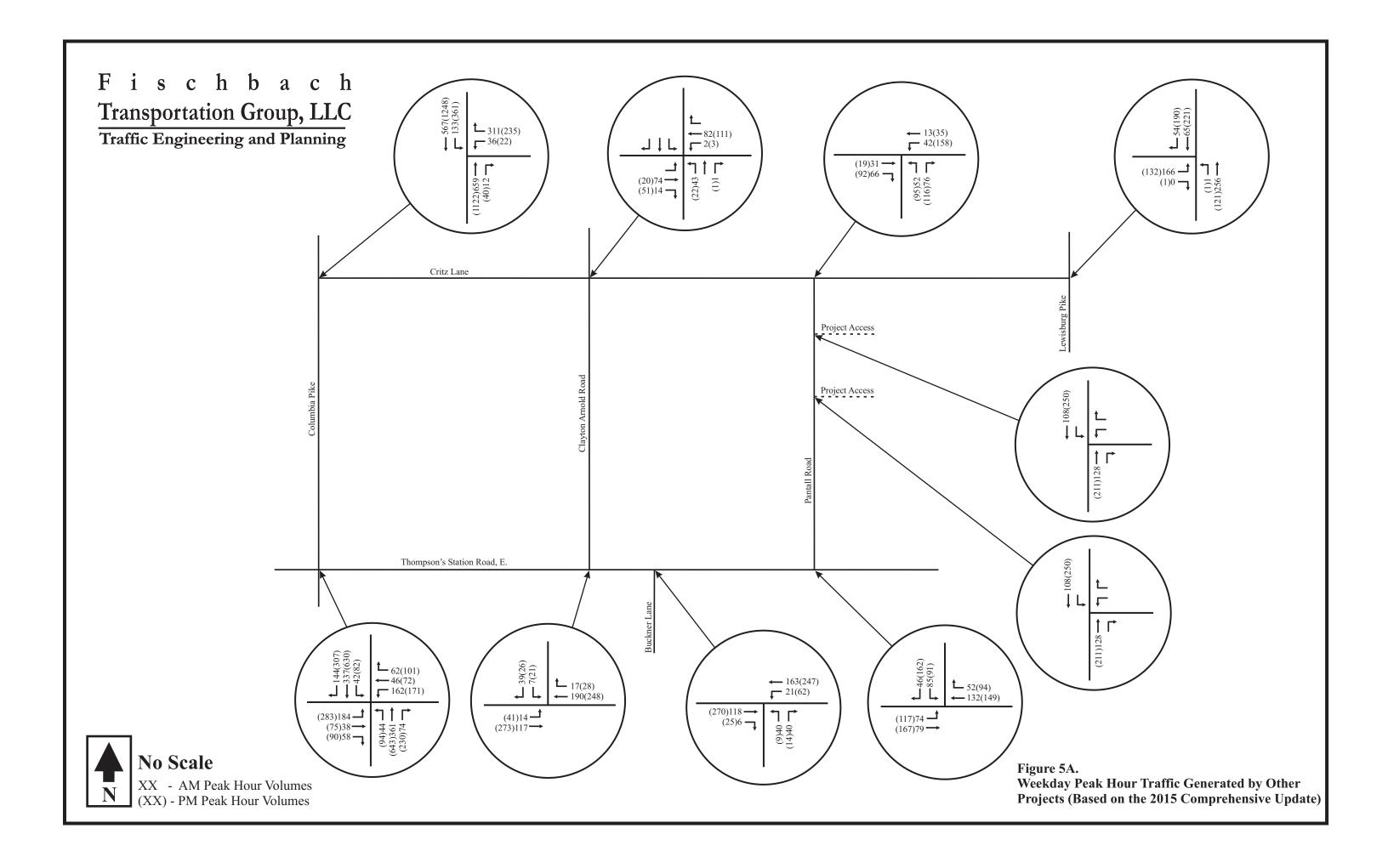
All of the critical turning movements at this intersection are expected to operate acceptably during the Saturday peak hour with existing conditions, a traffic signal, or a single-lane roundabout.

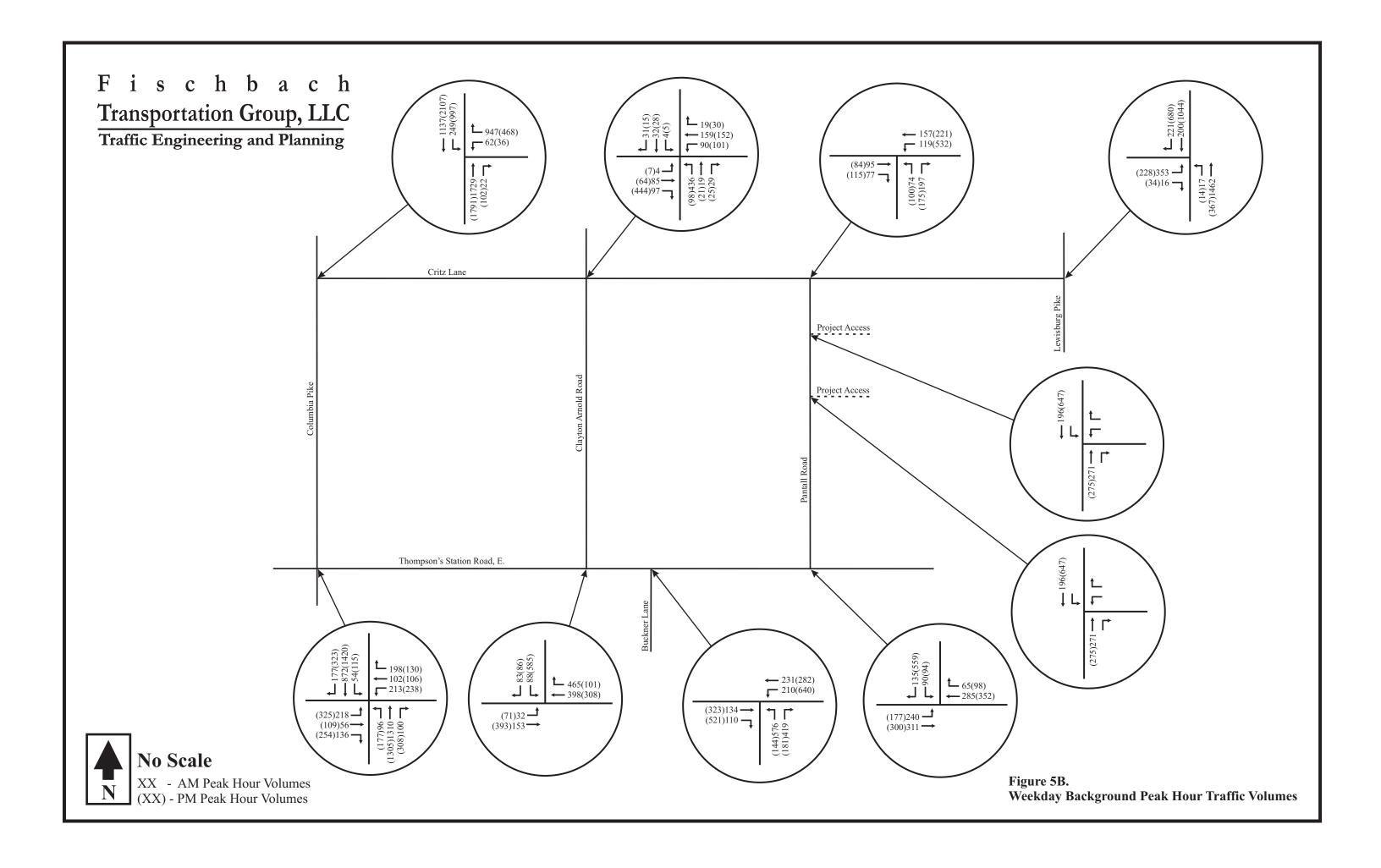
Thompson's Station Road, E. and Buckner Lane

With existing signalized conditions and existing laneage at this intersection, the westbound and/or northbound turning movements are expected to operate poorly during both weekday peak hours. Specifically, these conditions will occur because no dedicated turn lanes are provided on either Thompson's Station Road, E. or Buckner Lane at this location.

This intersection is expected to operate acceptably during the Saturday peak hour.

Thompson's Station Road, E. and Clayton Arnold Road


With existing stop conditions on Clayton Arnold Road and existing laneage at this intersection, most of the critical turning movements will operate at LOS C or better during both weekday peak hours. However, the southbound left turns will operate poorly during the PM peak hour.


All of the critical turning movements at this intersection are expected to operate acceptably during the Saturday peak hour.

Columbia Pike and Thompson's Station Road

With existing signalized conditions and existing laneage at this intersection, the intersection of Columbia Pike and Thompson's Station Road is expected to operate at LOS F during both weekday peak hours, with significant vehicle delays and queues for multiple turning movements during both peak hours. Based on these results, additional analyses were conducted in order to identify how well this intersection would operate if an additional northbound through lane and southbound through lane were provided. The additional analyses indicate that the intersection of Columbia Pike and Thompson's Station Road would operate at LOS D during the weekday AM peak hour and LOS F during the weekday PM peak hour under these conditions.

This intersection is expected to operate acceptably during the Saturday peak hour.

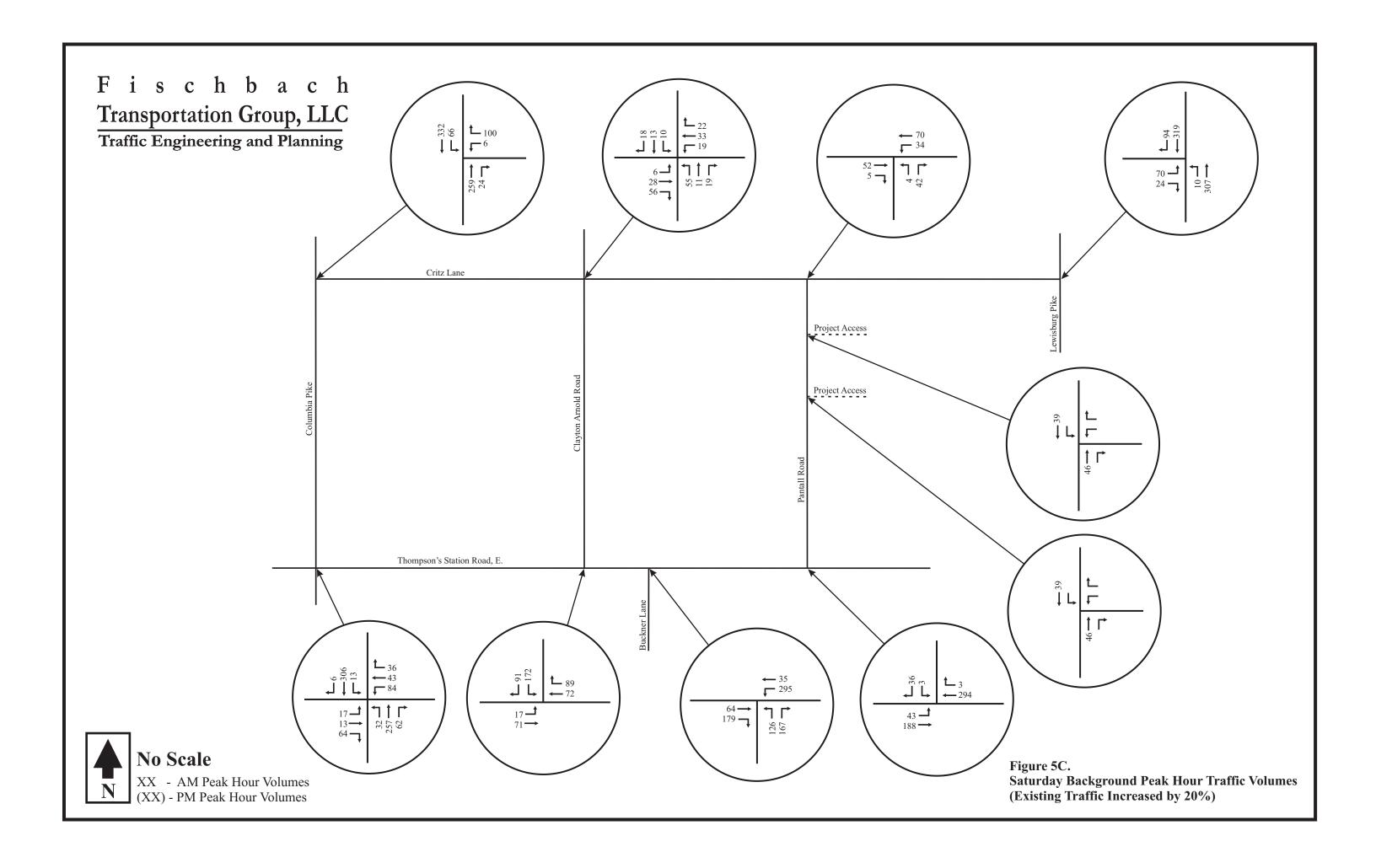


TABLE 4A. BACKGROUND WEEKDAY PEAK HOUR LEVELS OF SERVICE

	TURNING	AM PEA	K HOUR	PM PEA	K HOUR	
INTERSECTION	MOVEMENT	LEVEL OF SERVICE	95 th %-ILE QUEUE	LEVEL OF SERVICE	95 th %-ILE QUEUE	
	Westbound Left Turns	LOS C	2 veh (26 sec/veh)	LOS C	1 veh (35 sec/veh)	
	Westbound Right Turns	LOS F	95 veh (325 sec/veh)	LOS F	24 veh (94 sec/veh)	
Columbia Pike and	Northbound Thrus	LOS F	50 veh (116 sec/veh)	LOS D	32 veh (44 sec/veh)	
Critz Lane (with planned traffic	Northbound Right Turns	LOS F	51 veh (117 sec/veh)	LOS D	33 veh (48 sec/veh)	
signal and laneage)	Southbound Left Turns	LOS C	10 veh (28 sec/veh)	LOS F	135 veh (921 sec/veh)	
	Southbound Thrus	LOS B	10 veh (11 sec/veh)	LOS B	16 veh (11 sec/veh)	
	OVERALL INTERSECTION	LOS F (129 sec/veh)		LOS F (129 sec/veh) LOS F (195		95 sec/veh)
	Westbound Left Turns	LOS D	3 veh (36 sec/veh)	LOS C	1 veh (33 sec/veh)	
	Westbound Right Turns	LOS F	31 veh (131 sec/veh)	LOS B	6 veh (20 sec/veh)	
Columbia Pike and Critz Lane	Northbound Thrus	LOS D	31 veh (40 sec/veh)	LOS F	63 veh (159 sec/veh)	
(with planned traffic signal and laneage, plus second westbound right turn lane)	Northbound Right Turns	LOS D	31 veh (40 sec/veh)	LOS F	65 veh (169 sec/veh)	
	Southbound Left Turns	LOS D	11 veh (35 sec/veh)	LOS F	114 veh (456 sec/veh)	
	Southbound Thrus	LOS A	8 veh (7 sec/veh)	LOS B	18 veh (13 sec/veh)	
	OVERALL INTERSECTION	LOS D (5	51 sec/veh)	LOS F (146 sec/veh)		

Critz Lane and Clayton Arnold Road / Paddock	Eastbound Turning Movements	LOS A	0 veh (8 sec/veh)	LOS A	0 veh (8 sec/veh)
	Westbound Turning Movements	LOS A	1 veh (8 sec/veh)	LOS A	1 veh (9 sec/veh)
Park Drive (with existing conditions)	Northbound Turning Movements	LOS F	33 veh (306 sec/veh)	LOS D	3 veh (29 sec/veh)
,	Southbound Turning Movements	LOS B	1 veh (14 sec/veh)	LOS C	1 veh (20 sec/veh)
	Eastbound Turning Movements	LOS A	1 veh (5 sec/veh)	LOS A	3 veh (8 sec/veh)
Critz Lane and Clayton Arnold Road / Paddock	Westbound Turning Movements	LOS A	2 veh (9 sec/veh)	LOS A	1 veh (5 sec/veh)
Park Drive (with single-lane roundabout)	Northbound Turning Movements	LOS A	2 veh (8 sec/veh)	LOS A	1 veh (4 sec/veh)
,	Southbound Turning Movements	LOS A	1 veh (7 sec/veh)	LOS A	1 veh (4 sec/veh)
Critz Lane and Pantall Road	Westbound Left Turns / Thrus	LOS A	1 veh (8 sec/veh)	LOS A	2 veh (9 sec/veh)
(with existing conditions)	Northbound Left and Right Turns	LOS B	2 veh (15 sec/veh)	LOS F	20 veh (370 sec/veh)
Critz Lane and	Eastbound Turning Movements	LOS A	1 veh (4 sec/veh)	LOS A	1 veh (8 sec/veh)
Pantall Road (with single-lane	Westbound Turning Movements	LOS A	1 veh (5 sec/veh)	LOS B	5 veh (12 sec/veh)
roundabout)	Northbound Turning Movements	LOS A	1 veh (5 sec/veh)	LOS A	1 veh (5 sec/veh)
Lewisburg Pike and Critz Lane (with planned traffic signal and laneage)	Eastbound Left Turns	LOS F	32 veh (178 sec/veh)	LOS E	14 veh (64 sec/veh)
	Eastbound Right Turns	LOS D	1 veh (47 sec/veh)	LOS D	2 veh (47 sec/veh)
	Northbound Left Turns	LOS A	1 veh (6 sec/veh)	LOS B	1 veh (19 sec/veh)
	Northbound Thrus	LOS F	83 veh (74 sec/veh)	LOS A	7 veh (7 sec/veh)

	Southbound Thrus	LOS A	5 veh (9 sec/veh)	LOS C	36 veh (24 sec/veh)	
	Southbound Right Turns	LOS A	2 veh (2 sec/veh)	LOS A	7 veh (4 sec/veh)	
	OVERALL INTERSECTION	LOS E (7	7 sec/veh)	LOS B (2	0 sec/veh)	
Thompson's Station Road, E. and Pantall Road	Eastbound Left Turns / Thrus	LOS A	1 veh (9 sec/veh)	LOS A	1 veh (9 sec/veh)	
(with existing conditions)	Southbound Left and Right Turns	LOS F	14 veh (176 sec/veh)	LOS F	48 veh (363 sec/veh)	
	Eastbound Left Turns	LOS B	3 veh (10 sec/veh)	LOS C	7 veh (30 sec/veh)	
Thompson's Station	Eastbound Thrus	LOS A	3 veh (7 sec/veh)	LOS C	11 veh (24 sec/veh)	
Road, E. and Pantall Road (with eastbound left	Westbound Thrus / Right Turns	LOS B	8 veh (19 sec/veh)	LOS D	22 veh (50 sec/veh)	
turn lane and traffic signal)	Southbound Left and Right Turns	LOS C	7 veh (26 sec/veh)	LOS D	31 veh (46 sec/veh)	
	OVERALL INTERSECTION	LOS B (15 sec/veh)		LOS B (15 sec/veh) LOS D (41 s		11 sec/veh)
Thompson's Station	Eastbound Turning Movements	LOS A	3 veh (8 sec/veh)	LOS A	2 veh (7 sec/veh)	
Road, E. and Pantall Road (with single-lane	Westbound Turning Movements	LOS A	2 veh (7 sec/veh)	LOS A	2 veh (7 sec/veh)	
roundabout)	Southbound Turning Movements	LOS A	1 veh (6 sec/veh)	LOS C	6 veh (15 sec/veh)	
Thompson's Station Road, E. and Buckner Lane (with existing conditions)	Eastbound Thrus / Right Turns	LOS C	9 veh (28 sec/veh)	LOS B	14 veh (13 sec/veh)	
	Westbound Left Turns / Thrus	LOS F	40 veh (205 sec/veh)	LOS F	148 veh (777 sec/veh)	
	Northbound Left and Right Turns	LOS F	63 veh (119 sec/veh)	LOS F	24 veh (161 sec/veh)	
	OVERALL INTERSECTION	LOS F (12	LOS F (129 sec/veh)		73 sec/veh)	

Thompson's Station Road, E. and	Eastbound Left Turns / Thrus	LOS B	1 veh (10 sec/veh)	LOS A	1 veh (8 sec/veh)
Clayton Arnold Road	Southbound Left Turns	LOS C	2 veh (24 sec/veh)	LOS F	51 veh (674 sec/veh)
(with existing conditions)	Southbound Right Turns	LOS C	1 veh (15 sec/veh)	LOS B	1 veh (11 sec/veh)
	Eastbound Left Turns	LOS F	13 veh (182 sec/veh)	LOS F	25 veh (278 sec/veh)
	Eastbound Thrus / Right Turns	LOS F	22 veh (280 sec/veh)	LOS F	50 veh (562 sec/veh)
	Westbound Left Turns	LOS F	17 veh (246 sec/veh)	LOS F	25 veh (419 sec/veh)
Columbia Pike and	Westbound Thrus / Right Turns	LOS F	46 veh (810 sec/veh)	LOS F	36 veh (754 sec/veh)
Thompson's Station Road (with existing	Northbound Left Turns	LOS C	4 veh (34 sec/veh)	LOS E	11 veh (57 sec/veh)
conditions)	Northbound Thrus / Right Turns	LOS F	105 veh (139 sec/veh)	LOS F	154 veh (239 sec/veh)
	Southbound Left Turns	LOS D	2 veh (37 sec/veh)	LOS D	8 veh (47 sec/veh)
	Southbound Thrus / Right Turns	LOS D	45 veh (39 sec/veh)	LOS F	196 veh (335 sec/veh)
	OVERALL INTERSECTION	LOS F (17	8.0 sec/veh)	LOS F (32	4.0 sec/veh)
	Eastbound Left Turns	LOS F	12 veh (137 sec/veh)	LOS F	14 veh (122 sec/veh)
Columbia Pike and Thompson's Station	Eastbound Thrus / Right Turns	LOS D	9 veh (47 sec/veh)	LOS F	45 veh (507 sec/veh)
Road (with additional northbound through lane and southbound through lane)	Westbound Left Turns	LOS C	8 veh (32 sec/veh)	LOS F	12 veh (133 sec/veh)
	Westbound Thrus / Right Turns	LOS E	14 veh (56 sec/veh)	LOS F	31 veh (570 sec/veh)
	Northbound Left Turns	LOS B	2 veh (18 sec/veh)	LOS C	4 veh (24 sec/veh)

Northbound Thrus	LOS D	26 veh (42 sec/veh)	LOS D	26 veh (38 sec/veh)
Northbound Right Turns	LOS D	26 veh (43 sec/veh)	LOS D	28 veh (44 sec/veh)
Southbound Left Turns	LOS C	1 veh (23 sec/veh)	LOS C	2 veh (22 sec/veh)
Southbound Thrus	LOS C	17 veh (29 sec/veh)	LOS F	35 veh (61 sec/veh)
Southbound Right Turns	LOS C	16 veh (29 sec/veh)	LOS F	39 veh (77 sec/veh)
OVERALL INTERSECTION	LOS D (4	4 sec/veh)	LOS F (12	1.0 sec/veh)

TABLE 4B. BACKGROUND SATURDAY PEAK HOUR LEVELS OF SERVICE

	TURNING	AFTERNOON PEAK			
INTERSECTION	MOVEMENT	LEVEL OF SERVICE	95 th %-ILE QUEUE		
	Westbound Left Turns	LOS C	1 veh (21 sec/veh)		
	Westbound Right Turns	LOS B	2 veh (19 sec/veh)		
Columbia Pike and	Northbound Thrus	LOS A	1 veh (8 sec/veh)		
Critz Lane (with existing	Northbound Right Turns	LOS A	1 veh (8 sec/veh)		
conditions)	Southbound Left Turns	LOS A	1 veh (5 sec/veh)		
	Southbound Thrus	LOS A	1 veh (3 sec/veh)		
	OVERALL INTERSECTION	LOS A (7 sec/veh)		
	Westbound Left Turns	LOS C	1 veh (21 sec/veh)		
	Westbound Right Turns	LOS B	1 veh (18 sec/veh)		
Columbia Pike and	Northbound Thrus	LOS A	1 veh (8 sec/veh)		
Critz Lane (with existing	Northbound Right Turns	LOS A	1 veh (8 sec/veh)		
conditions)	Southbound Left Turns	LOS A	1 veh (5 sec/veh)		
	Southbound Thrus	LOS A	1 veh (3 sec/veh)		
	OVERALL INTERSECTION	LOS A (7 sec/veh)		

	Eastbound Turning Movements	LOS A	0 veh (7 sec/veh)
Critz Lane and Clayton Arnold Road / Paddock	Westbound Turning Movements	LOS A	0 veh (7 sec/veh)
Park Drive (with existing conditions)	Northbound Turning Movements	LOS B	1 veh (10 sec/veh)
,	Southbound Turning Movements	LOS A	1 veh (10 sec/veh)
	Eastbound Turning Movements	LOS A	1 veh (3 sec/veh)
Critz Lane and Clayton Arnold Road / Paddock	Westbound Turning Movements	LOS A	1 veh (3 sec/veh)
Park Drive (with single-lane roundabout)	Northbound Turning Movements	LOS A	1 veh (3 sec/veh)
,	Southbound Turning Movements	LOS A	1 veh (3 sec/veh)
Critz Lane and Pantall Road	Westbound Left Turns / Thrus	LOS A	1 veh (7 sec/veh)
(with existing conditions)	Northbound Left and Right Turns	LOS A	1 veh (9 sec/veh)
Critz Lane and	Eastbound Turning Movements	LOS A	1 veh (3 sec/veh)
Pantall Road (with single-lane	Westbound Turning Movements	LOS A	1 veh (3 sec/veh)
roundabout)	Northbound Turning Movements	LOS A	1 veh (3 sec/veh)
	Eastbound Left Turns	LOS C	2 veh (34 sec/veh)
Lewisburg Pike and Critz Lane (with planned traffic signal and laneage)	Eastbound Right Turns	LOS C	1 veh (27 sec/veh)
	Northbound Left Turns	LOS A	1 veh (4 sec/veh)
	Northbound Thrus	LOS A	2 veh (3 sec/veh)

	Southbound Thrus	LOS A	4 veh (8 sec/veh)
	Southbound Right Turns	LOS A	1 veh (4 sec/veh)
	OVERALL INTERSECTION	LOS A (8	3 sec/veh)
Thompson's Station Road, E. and Pantall Road	Eastbound Left Turns / Thrus	LOS A	1 veh (8 sec/veh)
(with existing conditions)	Southbound Left and Right Turns	LOS B	1 veh (11 sec/veh)
	Eastbound Left Turns	LOS A	1 veh (3 sec/veh)
Thompson's Station	Eastbound Thrus	LOS A	1 veh (2 sec/veh)
Road, E. and Pantall Road (with eastbound left	Westbound Thrus / Right Turns	LOS A	3 veh (6 sec/veh)
turn lane and traffic signal)	Southbound Left and Right Turns	LOS C	1 veh (35 sec/veh)
	OVERALL INTERSECTION	LOS A (6 sec/veh)	
Thompson's Station	Eastbound Turning Movements	LOS A	1 veh (4 sec/veh)
Road, E. and Pantall Road (with single-lane	Westbound Turning Movements	LOS A	1 veh (5 sec/veh)
roundabout)	Southbound Turning Movements	LOS A	1 veh (4 sec/veh)
	Eastbound Thrus / Right Turns	LOS A	2 veh (7 sec/veh)
Thompson's Station Road, E. and Buckner Lane (with existing conditions)	Westbound Left Turns / Thrus	LOS B	5 veh (13 sec/veh)
	Northbound Left and Right Turns	LOS C	5 veh (20 sec/veh)
	OVERALL INTERSECTION	LOS B (1	4 sec/veh)

Thompson's Station Road, E. and	Eastbound Left Turns / Thrus	LOS A	0 veh (8 sec/veh)
Clayton Arnold Road	Southbound Left Turns	LOS B	1 veh (11 sec/veh)
(with existing conditions)	Southbound Right Turns	LOS A	1 veh (9 sec/veh)
	Eastbound Left Turns	LOS C	1 veh (28 sec/veh)
	Eastbound Thrus / Right Turns	LOS C	2 veh (32 sec/veh)
	Westbound Left Turns	LOS C	2 veh (27 sec/veh)
Columbia Pike and	Westbound Thrus / Right Turns	LOS C	2 veh (28 sec/veh)
Thompson's Station Road (with existing conditions)	Northbound Left Turns	LOS A	1 veh (9 sec/veh)
	Northbound Thrus / Right Turns	LOS B	6 veh (13 sec/veh)
	Southbound Left Turns	LOS A	1 veh (10 sec/veh)
	Southbound Thrus / Right Turns LOS B		6 veh (13 sec/veh)
	OVERALL INTERSECTION	LOS B (17 sec/veh)	
	Eastbound Left Turns	LOS C	1 veh (24 sec/veh)
Columbia Pike and Thompson's Station Road (with additional northbound through lane and southbound through lane)	Eastbound Thrus / Right Turns	LOS C	2 veh (27 sec/veh)
	Westbound Left Turns	LOS C	2 veh (22 sec/veh)
	Westbound Thrus / Right Turns	LOS C	2 veh (23 sec/veh)
	Northbound Left Turns	LOS B	1 veh (10 sec/veh)

OVERALL INTERSECTION	LOS B (1	6 sec/veh)
Southbound Right Turns	LOS B	3 veh (13 sec/veh)
Southbound Thrus	LOS B	3 veh (13 sec/veh)
Southbound Left Turns	LOS B	1 veh (11 sec/veh)
Northbound Right Turns	LOS B	2 veh (12 sec/veh)
Northbound Thrus	LOS B	3 veh (12 sec/veh)

5. IMPACTS OF PROPOSED DEVELOPMENT

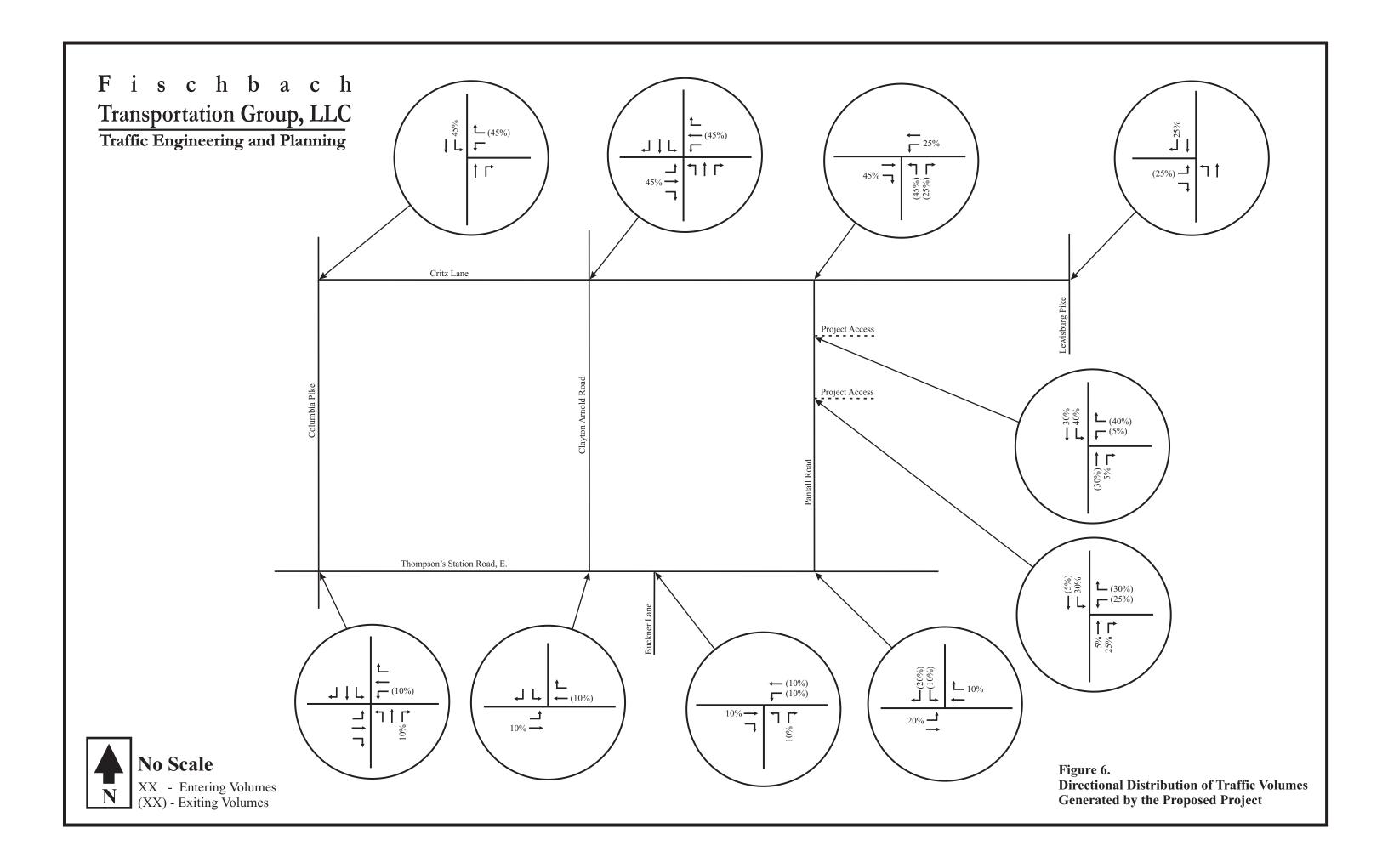
5.1 TRIP GENERATION

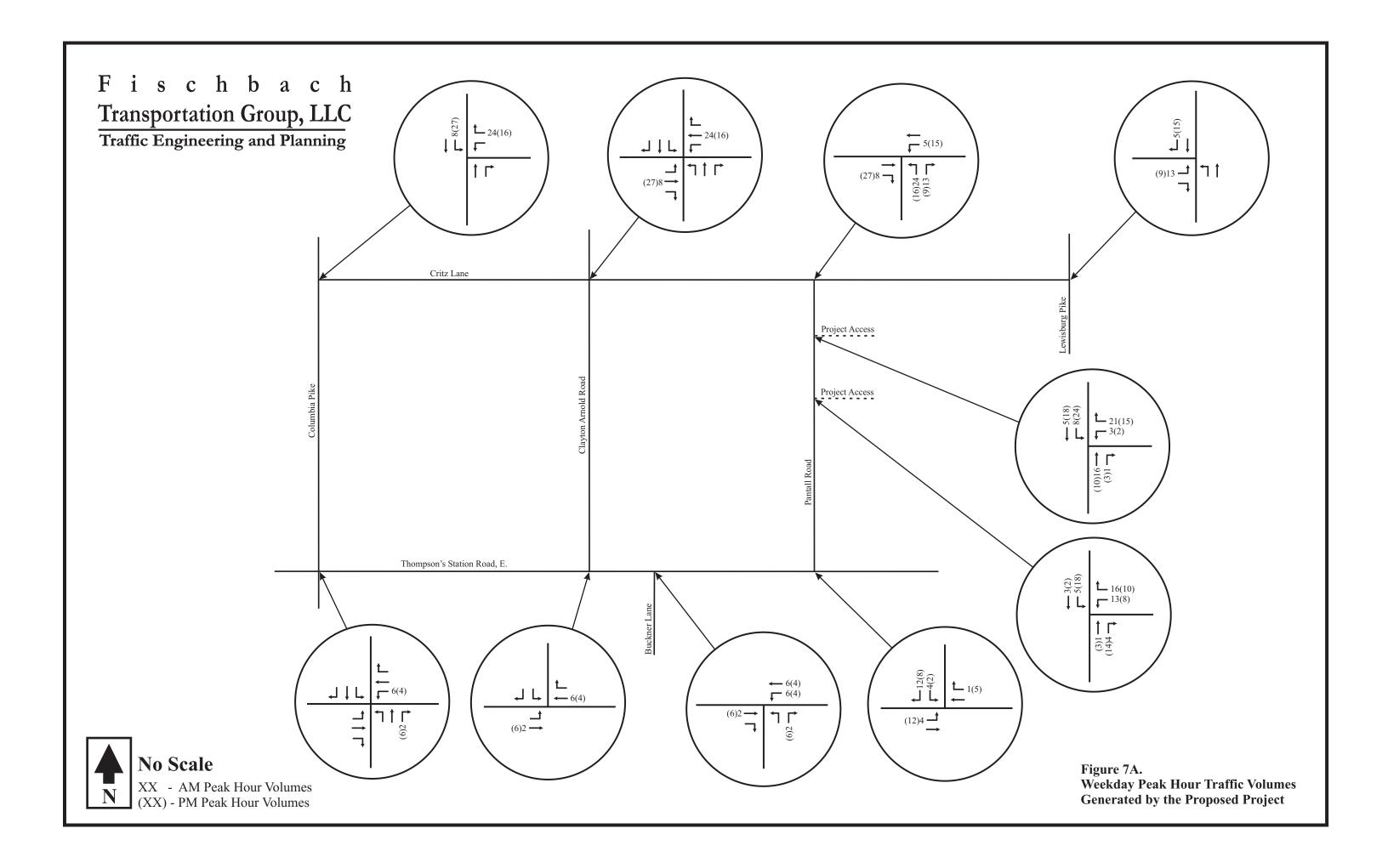
Trip generation calculations were conducted in order to identify how much traffic will be generated by the proposed project. Trip generation data for daily and peak hour trips were identified from <u>Trip Generation</u>, Tenth Edition, which was published by the Institute of Transportation Engineers (ITE) in 2017. <u>Tables 5A and 5B</u> present the daily and peak hour trip generations for proposed project, and these calculations are included in <u>Appendix C</u>.

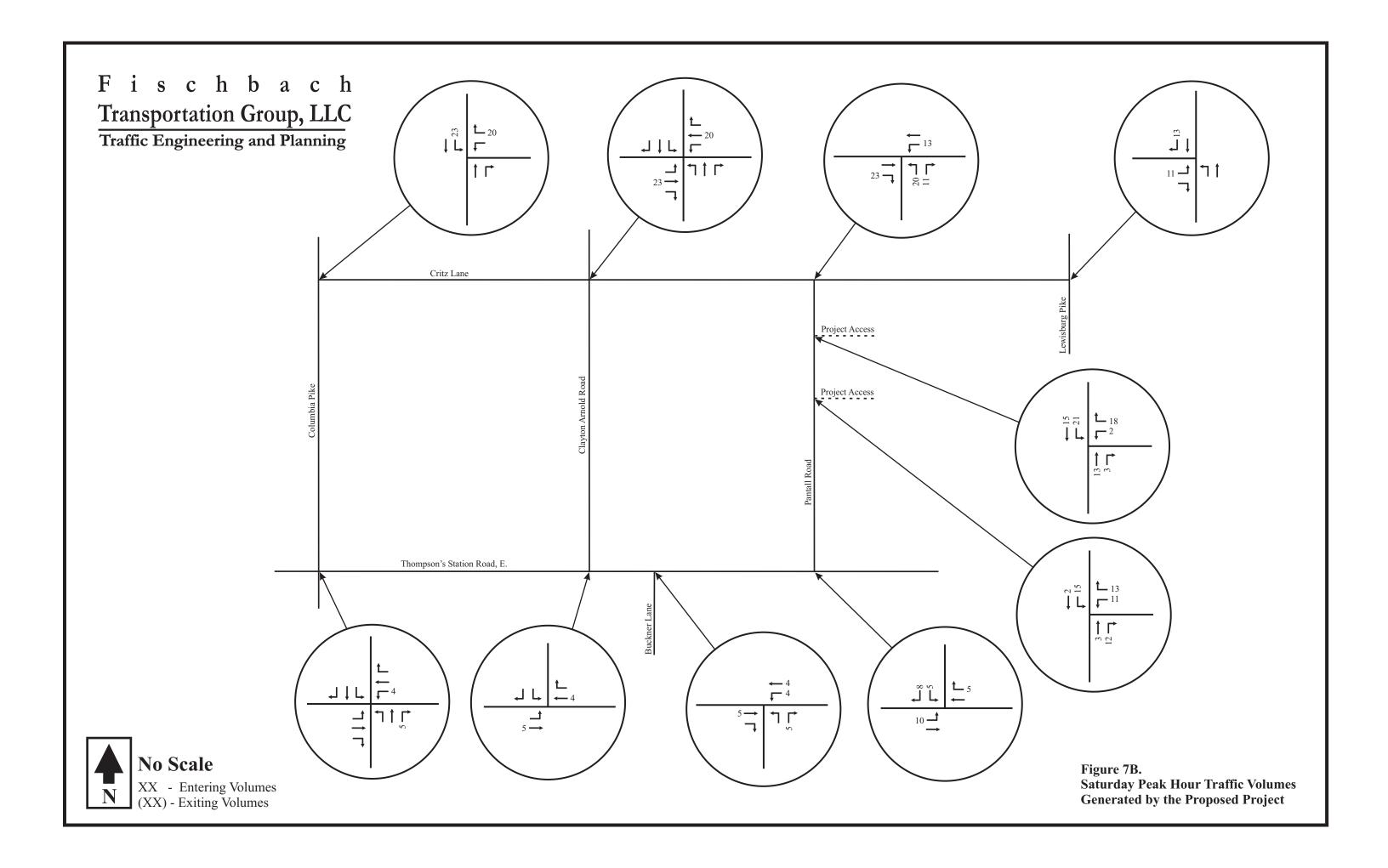
TABLE 5A. WEEKDAY TRIP GENERATION FOR THE PROPOSED PROJECT

		GENERATED TRAFFIC				
LAND USE	SIZE	DAILY	AM PEAK HOUR		PM PEAK HOUR	
			ENTER	EXIT	ENTER	EXIT
Single-Family Residential (LUC 210)	92 homes	962	18	53	59	35

TABLE 5B. SATURDAY TRIP GENERATION FOR THE PROPOSED PROJECT

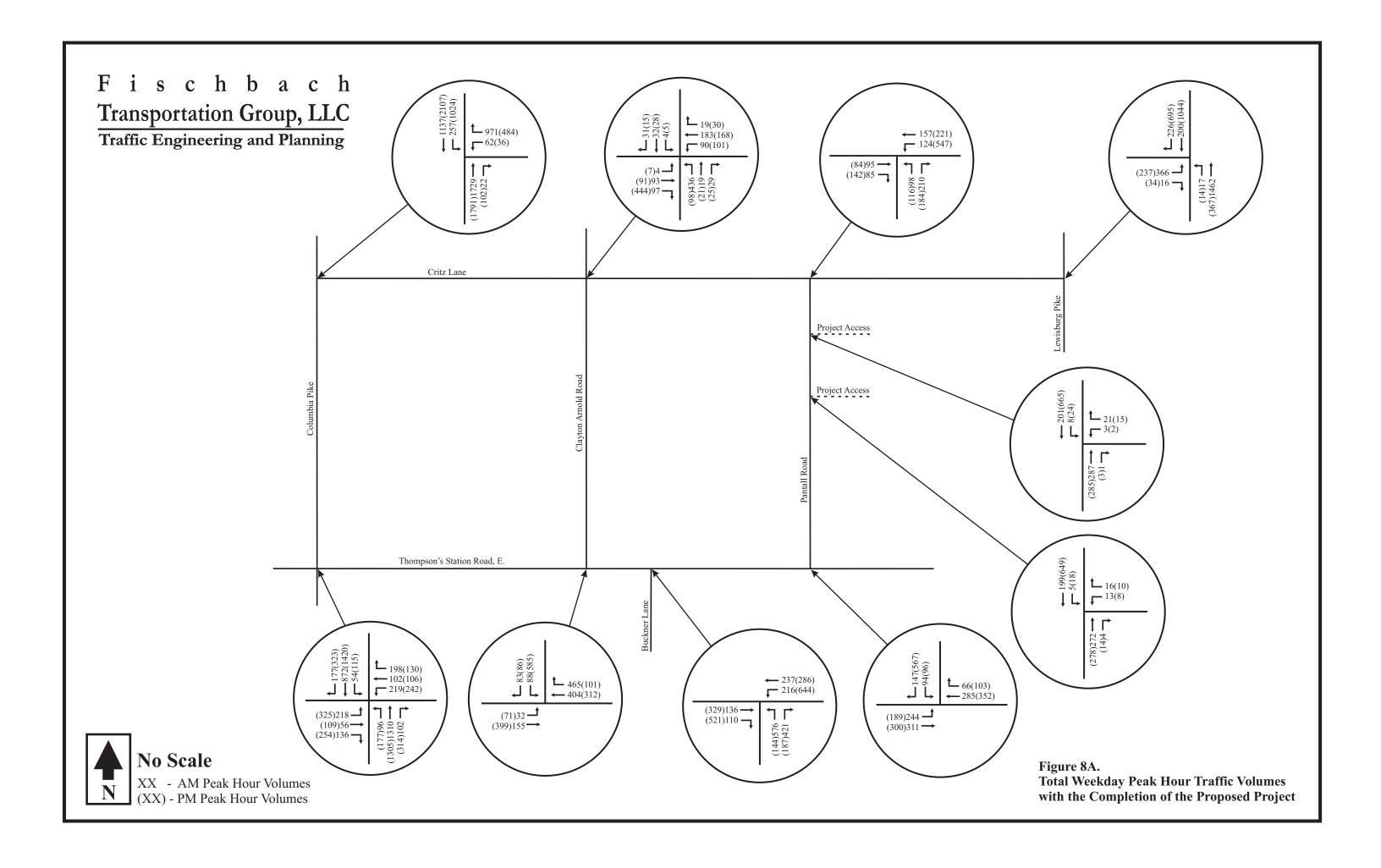

LAND USE	SIZE	GENERATE SATURDAY : ENTER	D TRAFFIC PEAK HOUR EXIT
Single-Family Residential	92 homes	51	44


5.2 TRIP DISTRIBUTION AND TRAFFIC ASSIGNMENT


For the purposes of this study, it was estimated that the trips generated by the proposed development will access the project site according to the directional distribution shown in Figure 6. The development of this distribution was based on the following factors:

- existing land use characteristics,
- the directions of approach of the existing traffic,
- the access proposed for the project, and
- the locations of population centers in the area.

The peak hour trip generation and directional distribution were used to add the site-generated trips to the roadway system. Figures 7A and 7B include the peak hour traffic volumes that are expected to be generated by the proposed project.


5.3 CAPACITY ANALYSES

In order to identify the projected peak hour traffic volumes at the completion of the proposed project, the trips generated by the proposed development were added to the background peak hour traffic volumes within the study area. The resulting peak hour volumes are shown in Figures 8A and 8B.

Using the total projected peak hour traffic volumes, capacity analyses were conducted in order to determine the impact of the proposed project on the roadway system. For the purposes of these analyses, it was assumed that all existing laneage and traffic control will be maintained, unless otherwise described below. Also, it was assumed that each of the project accesses will be constructed to include one entering lane and one exiting lane.

The results of the capacity analyses for the total projected peak hour traffic volumes are shown in Tables 6A and 6B, and Appendix B includes the capacity analyses worksheets. The capacity analyses indicate that the total projected conditions are consistent with the background conditions. Also, at the intersections of Pantall Road and the project accesses, all of the critical turning movements will operate at LOS C or better during the weekday and Saturday peak hours.

Using the total projected peak hour traffic volumes, analyses were conducted to determine whether or not a dedicated southbound left turn lane and/or northbound right turn lane is warranted for construction on Pantall Road at one or both of the project accesses. These analyses were based on the method outlined in *NCHRP Report 457: Engineering Study Guide for Evaluating Intersection Improvements*, and the relevant charts are included in Appendix D. The analyses indicate that the total projected traffic volumes shown in Figure 8 do warrant a southbound left turn lane on Pantall Road at each of the project accesses.

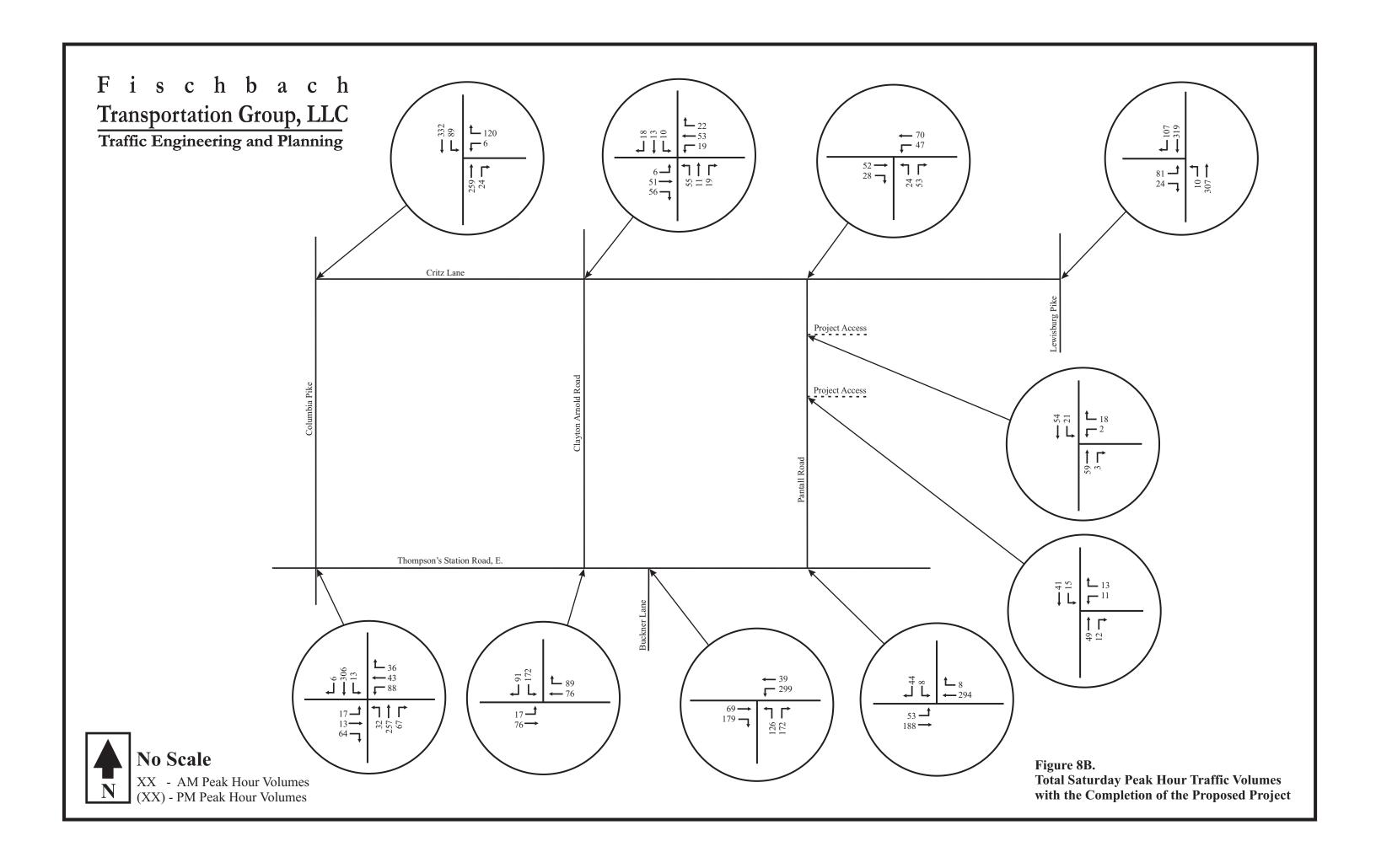


TABLE 6A. TOTAL WEEKDAY PEAK HOUR LEVELS OF SERVICE

	TURNING	AM PEAK HOUR		R PM PEAK HOUR		
INTERSECTION	MOVEMENT	LEVEL OF SERVICE	95 th %-ILE QUEUE	LEVEL OF SERVICE	95 th %-ILE QUEUE	
	Westbound Left Turns	LOS C	2 veh (26 sec/veh)	LOS C	1 veh (35 sec/veh)	
	Westbound Right Turns	LOS F	99 veh (334 sec/veh)	LOS F	27 veh (106 sec/veh)	
Columbia Pike and	Northbound Thrus	LOS F	52 veh (121 sec/veh)	LOS D	32 veh (44 sec/veh)	
Critz Lane (with planned traffic signal and laneage)	Northbound Right Turns	LOS F	52 veh (123 sec/veh)	LOS D	33 veh (48 sec/veh)	
signal and laneage)	Southbound Left Turns	LOS C	10 veh (28 sec/veh)	LOS F	140 veh (957 sec/veh)	
	Southbound Thrus	LOS B	10 veh (11 sec/veh)	LOS B	16 veh (11 sec/veh)	
	OVERALL INTERSECTION	LOS F (134 sec/veh)		LOS F (206 sec/veh)		
	Westbound Left Turns	LOS D	3 veh (36 sec/veh)	LOS C	1 veh (33 sec/veh)	
	Westbound Right Turns	LOS F	33 veh (135 sec/veh)	LOS B	6 veh (20 sec/veh)	
Columbia Pike and Critz Lane	Northbound Thrus	LOS D	32 veh (41 sec/veh)	LOS F	63 veh (159 sec/veh)	
(with planned traffic signal and laneage, plus second westbound right turn lane)	Northbound Right Turns	LOS D	32 veh (42 sec/veh)	LOS F	65 veh (169 sec/veh)	
	Southbound Left Turns	LOS D	11 veh (35 sec/veh)	LOS F	121 veh (496 sec/veh)	
	Southbound Thrus	LOS A	8 veh (7 sec/veh)	LOS B	18 veh (13 sec/veh)	
	OVERALL INTERSECTION	LOS D (54 sec/veh)		LOS D (54 sec/veh) LOS F (154 sec/veh)		54 sec/veh)

	Eastbound Turning Movements	LOS A	0 veh (8 sec/veh)	LOS A	0 veh (8 sec/veh)
Critz Lane and Clayton Arnold Road / Paddock	Westbound Turning Movements	LOS A	1 veh (8 sec/veh)	LOS A	1 veh (9 sec/veh)
Park Drive (with existing conditions)	Northbound Turning Movements	ents LOS F 35 veh (353 sec/veh) LOS		LOS D	3 veh (33 sec/veh)
,	Southbound Turning Movements	LOS B	1 veh (14 sec/veh)	LOS C	1 veh (21 sec/veh)
	Eastbound Turning Movements	LOS A	1 veh (5 sec/veh)	LOS A	3 veh (8 sec/veh)
Critz Lane and Clayton Arnold Road / Paddock	Westbound Turning Movements	lovements LOS A (10 sec/veh) LOS A		LOS A	1 veh (6 sec/veh)
Park Drive (with single-lane roundabout)	Northbound Turning Movements	rning Movements LOS A (8 sec/veh)		LOS A	1 veh (4 sec/veh)
,	Southbound Turning Movements			LOS A	1 veh (4 sec/veh)
Critz Lane and Pantall Road	Westbound Left Turns / Thrus	LOS A 1 veh (8 sec/veh) LOS A		LOS A	2 veh (10 sec/veh)
(with existing conditions)	Northbound Left and Right Turns	LOS C	3 veh (17 sec/veh)	LOS F	26 veh (573 sec/veh)
Critz Lane and	Eastbound Turning Movements	LOS A	1 veh (5 sec/veh)	LOS A	1 veh (9 sec/veh)
Pantall Road (with single-lane	Westbound Turning Movements	LOS A	1 veh (5 sec/veh)	LOS B	6 veh (13 sec/veh)
roundabout)	Northbound Turning Movements	LOS A	1 veh (6 sec/veh)	LOS A	1 veh (5 sec/veh)
	Eastbound Left Turns	LOS F	35 veh (195 sec/veh)	LOS E	14 veh (66 sec/veh)
Lewisburg Pike and Critz Lane	Eastbound Right Turns	LOS D	1 veh (47 sec/veh)	LOS D	2 veh (47 sec/veh)
(with planned traffic signal and laneage)	Northbound Left Turns	LOS A	1 veh (6 sec/veh)	LOS B	1 veh (19 sec/veh)
	Northbound Thrus	LOS F	83 veh (74 sec/veh)	LOS A	7 veh (7 sec/veh)

	Southbound Thrus	LOS A	5 veh (9 sec/veh)	LOS C	36 veh (24 sec/veh)
	Southbound Right Turns	LOS A	2 veh (2 sec/veh)	LOS A	8 veh (4 sec/veh)
	OVERALL INTERSECTION	LOS E (8	0 sec/veh)	LOS C (2	0 sec/veh)
Thompson's Station Road, E. and Pantall Road	Eastbound Left Turns / Thrus	LOS A	1 veh (9 sec/veh)	LOS A	1 veh (9 sec/veh)
(with existing conditions)	Southbound Left and Right Turns	LOS F 16 veh (210 sec/veh)		LOS F	40 veh (298 sec/veh)
	Eastbound Left Turns	LOS B	3 veh (11 sec/veh)	LOS C	7 veh (31 sec/veh)
Thompson's Station	westbound LOS C 9 veh (21 sec/veh)		LOS C	11 veh (25 sec/veh)	
Road (with eastbound left				LOS E	23 veh (55 sec/veh)
turn lane and traffic signal)	Southbound Left and Right Turns	LOS C	7 veh (26 sec/veh)	LOS D	31 veh (46 sec/veh)
	OVERALL INTERSECTION	LOS B (1	6 sec/veh)	LOS D (43 sec/vel	
Thompson's Station	Eastbound Turning Movements	LOS A	3 veh (8 sec/veh)	LOS A	2 veh (7 sec/veh)
Road, E. and Pantall Road (with single-lane	Westbound Turning Movements	LOS A	2 veh (7 sec/veh)	LOS A	2 veh (7 sec/veh)
roundabout)	Southbound Turning Movements	LOS A	1 veh (6 sec/veh)	LOS C	6 veh (15 sec/veh)
	Eastbound Thrus / Right Turns	LOS C	9 veh (28 sec/veh)	LOS B	14 veh (13 sec/veh)
Thompson's Station Road, E. and Buckner Lane	Westbound Left Turns / Thrus	LOS F	LOS F 43 veh (227 sec/veh)		151 veh (803 sec/veh)
(with existing conditions)	Northbound Left and Right Turns	LOS F	63 veh (121 sec/veh)	LOS F	25 veh (171 sec/veh)
	OVERALL INTERSECTION	LOS F (1	36 sec/veh)	LOS F (38	86 sec/veh)

Thompson's Station	Eastbound Left Turns / Thrus	LOS B	1 veh (10 sec/veh)	LOS A	1 veh (8 sec/veh)
Road, E. and Clayton Arnold Road	Southbound Left Turns	LOS C	2 veh (25 sec/veh)	LOS F	51 veh (691 sec/veh)
(with existing conditions)	Southbound Right Turns	LOS C	1 veh (15 sec/veh)	LOS B	1 veh (11 sec/veh)
	Eastbound Left Turns	LOS F	13 veh (182 sec/veh)	LOS F	25 veh (278 sec/veh)
	Eastbound Thrus / Right Turns	LOS F	22 veh (280 sec/veh)	LOS F	50 veh (562 sec/veh)
	Westbound Left Turns	LOS F 18 veh (261 sec/veh) LOS F 46 veh (810 sec/veh)		LOS F	26 veh (431 sec/veh)
Columbia Pike and	Westbound Thrus / Right Turns			LOS F	36 veh (754 sec/veh)
Thompson's Station Road (with existing	Northbound Left Turns	LOS C	LOS C 4 veh (34 sec/veh) LOS F 105 veh (139 sec/veh)		11 veh (57 sec/veh)
conditions)	Northbound Thrus / Right Turns	LOS F			155 veh (241 sec/veh)
	Southbound Left Turns	LOS D	2 veh (37 sec/veh)	LOS D	8 veh (47 sec/veh)
	Southbound Thrus / Right Turns	LOS D	45 veh (39 sec/veh)	LOS F	196 veh (335 sec/veh)
	OVERALL INTERSECTION	LOS F (18	0.0 sec/veh)	LOS F (32	5.0 sec/veh)
	Eastbound Left Turns	LOS F	12 veh (137 sec/veh)	LOS F	14 veh (122 sec/veh)
Columbia Pike and Thompson's Station	Eastbound Thrus / Right Turns	LOS D	9 veh (48 sec/veh)	LOS F	45 veh (507 sec/veh)
Road (with additional northbound through	Westbound Left Turns	LOS C	8 veh (32 sec/veh)	LOS F	12 veh (139 sec/veh)
lane and southbound through lane)	Westbound Thrus / Right Turns	LOS E	14 veh (56 sec/veh)	LOS F	31 veh (570 sec/veh)
	Northbound Left Turns	LOS B	2 veh (18 sec/veh)	LOS C	4 veh (24 sec/veh)

	Northbound Thrus	LOS D	26 veh (42 sec/veh)	LOS D	27 veh (39 sec/veh)
	Northbound Right Turns	LOS D	26 veh (43 sec/veh)	LOS D	28 veh (45 sec/veh)
	Southbound Left Turns	LOS C	1 veh (23 sec/veh)	LOS C	2 veh (22 sec/veh)
	Southbound Thrus	LOS C	17 veh (29 sec/veh)	LOS F	35 veh (61 sec/veh)
	Southbound Right Turns	LOS C	16 veh (29 sec/veh)	LOS F	39 veh (77 sec/veh)
	OVERALL INTERSECTION	LOS D (4	14 sec/veh)	LOS F (12	1.0 sec/veh)
Pantall Road and	= '	LOS D (4	1 veh (11 sec/veh)	LOS F (12	1.0 sec/veh) 1 veh (12 sec/veh)
Pantall Road and Northern Project Access	INTERSECTION Westbound		1 veh		1 veh
Northern Project	INTERSECTION Westbound Left and Right Turns Southbound	LOS B	1 veh (11 sec/veh)	LOS B	1 veh (12 sec/veh)

TABLE 6B. TOTAL SATURDAY PEAK HOUR LEVELS OF SERVICE

	TURNING	AFTERNO	OON PEAK	
INTERSECTION	MOVEMENT	LEVEL OF SERVICE	95 th %-ILE QUEUE	
	Westbound Left Turns	LOS C	1 veh (20 sec/veh)	
	Westbound Right Turns	LOS B	2 veh (18 sec/veh)	
Columbia Pike and	Northbound Thrus	LOS A	1 veh (9 sec/veh)	
Critz Lane (with existing	Northbound Right Turns	LOS A	1 veh (9 sec/veh)	
conditions)	Southbound Left Turns	LOS A	1 veh (5 sec/veh)	
	Southbound Thrus	LOS A	1 veh (3 sec/veh)	
	OVERALL INTERSECTION	LOS A (8 sec/veh)	
	Westbound Left Turns	LOS C	1 veh (20 sec/veh)	
	Westbound Right Turns	LOS B	1 veh (17 sec/veh)	
Columbia Pike and	Northbound Thrus	LOS A	1 veh (9 sec/veh)	
Critz Lane (with existing	Northbound Right Turns	LOS A 1 veh (9 sec/vel		
conditions)	Southbound Left Turns	LOS A 1 veh (5 sec/veh		
	Southbound Thrus	LOS A 1 veh (3 sec/veh		
	OVERALL INTERSECTION	LOS A (7 sec/veh)	

	Eastbound Turning Movements	LOS A	0 veh (7 sec/veh)
Critz Lane and Clayton Arnold Road / Paddock	Westbound Turning Movements	LOS A	0 veh (8 sec/veh)
Park Drive (with existing conditions)	Northbound Turning Movements	LOS B	1 veh (11 sec/veh)
ŕ	Southbound Turning Movements	LOS A	1 veh (10 sec/veh)
	Eastbound Turning Movements	LOS A	1 veh (4 sec/veh)
Critz Lane and Clayton Arnold Road / Paddock	Westbound Turning Movements	LOS A	1 veh (4 sec/veh)
Park Drive (with single-lane roundabout)	Northbound Turning Movements	LOS A	1 veh (3 sec/veh)
,	Southbound Turning Movements	LOS A	1 veh (3 sec/veh)
Critz Lane and Pantall Road	Westbound Left Turns / Thrus	LOS A	1 veh (7 sec/veh)
(with existing conditions)	Northbound Left and Right Turns	LOS A	1 veh (9 sec/veh)
Critz Lane and	Eastbound Turning Movements	LOS A	1 veh (3 sec/veh)
Pantall Road (with single-lane	Westbound Turning Movements	LOS A	1 veh (3 sec/veh)
roundabout)	Northbound Turning Movements	LOS A	1 veh (3 sec/veh)
	Eastbound Left Turns	LOS C	3 veh (35 sec/veh)
Lewisburg Pike and Critz Lane	Eastbound Right Turns	LOS C	1 veh (27 sec/veh)
(with planned traffic signal and laneage)	Northbound Left Turns	LOS A	1 veh (4 sec/veh)
	Northbound Thrus	LOS A	2 veh (3 sec/veh)

	Southbound Thrus	LOS A	4 veh (8 sec/veh)	
	Southbound Right Turns	LOS A	1 veh (4 sec/veh)	
	OVERALL INTERSECTION	LOS A (9	9 sec/veh)	
Thompson's Station Road, E. and Pantall Road	Eastbound Left Turns / Thrus	LOS A	1 veh (8 sec/veh)	
(with existing conditions)	Southbound Left and Right Turns	LOS B	1 veh (11 sec/veh)	
	Eastbound Left Turns	LOS A	1 veh (3 sec/veh)	
Thompson's Station	Eastbound Thrus	LOS A	1 veh (2 sec/veh)	
Road, E. and Pantall Road (with eastbound left	Westbound Thrus / Right Turns	LOS A	3 veh (6 sec/veh)	
turn lane and traffic signal)	Southbound Left and Right Turns	LOS C	2 veh (35 sec/veh)	
	OVERALL INTERSECTION	LOS A (7 sec/veh)	
Thompson's Station	Eastbound Turning Movements	LOS A	1 veh (4 sec/veh)	
Road, E. and Pantall Road (with single-lane	Westbound Turning Movements	LOS A	1 veh (5 sec/veh)	
roundabout)	Southbound Turning Movements	LOS A	1 veh (4 sec/veh)	
	Eastbound Thrus / Right Turns	LOS A	2 veh (7 sec/veh)	
Thompson's Station Road, E. and	Westbound Left Turns / Thrus	LOS B 5 veh (13 sec/ve		
Buckner Lane (with existing conditions)	Northbound Left and Right Turns	LOS C 6 veh (20 sec/veh		
	OVERALL INTERSECTION	LOS B (1	4 sec/veh)	

Thompson's Station	Eastbound Left Turns / Thrus	LOS A	0 veh (8 sec/veh)		
Road, E. and Clayton Arnold Road	Southbound Left Turns	LOS B	1 veh (12 sec/veh)		
(with existing conditions)	Southbound Right Turns	LOS A	1 veh (9 sec/veh)		
	Eastbound Left Turns	LOS C	1 veh (28 sec/veh)		
	Eastbound Thrus / Right Turns	LOS C	2 veh (32 sec/veh)		
	Westbound Left Turns	ft Turns LOS C			
Columbia Pike and	Westbound Thrus / Right Turns	LOS C	2 veh (28 sec/veh)		
Thompson's Station Road (with existing	Northbound Left Turns				
conditions)	Northbound Thrus / Right Turns	LOS B	6 veh (13 sec/veh)		
	Southbound Left Turns	LOS A	1 veh (10 sec/veh)		
	Southbound Thrus / Right Turns	LOS B	6 veh (13 sec/veh)		
	OVERALL INTERSECTION	LOS B (1	7 sec/veh)		
	Eastbound Left Turns	LOS C	1 veh (24 sec/veh)		
Columbia Pike and Thompson's Station	Eastbound Thrus / Right Turns	LOS C	2 veh (27 sec/veh)		
Road (with additional northbound through	Westbound Left Turns	LOS C	2 veh (22 sec/veh)		
lane and southbound through lane)	Westbound Thrus / Right Turns	LOS C	2 veh (23 sec/veh)		
	Northbound Left Turns	LOS B	1 veh (10 sec/veh)		

	Northbound Thrus	LOS B	3 veh (12 sec/veh)			
	Northbound Right Turns	LOS B	3 veh (12 sec/veh)			
	Southbound Left Turns	LOS B	1 veh (11 sec/veh)			
	Southbound Thrus	LOS B	3 veh (13 sec/veh)			
	Southbound Right Turns	LOS B	3 veh (13 sec/veh)			
	OVERALL INTERSECTION	LOS B (1	6 sec/veh)			
Pantall Road and	Westbound Left and Right Turns	LOS A	1 veh (9 sec/veh)			
Northern Project Access	Southbound Left Turns / Thrus	LOS A	0 veh (7 sec/veh)			
Pantall Road and	Westbound Left and Right Turns	LOS A	1 veh (9 sec/veh)			
Southern Project Access	Southbound Left Turns / Thrus	LOS A	0 veh (7 sec/veh)			

6. CRASH DATA ON THE ROADWAYS WITHIN THE STUDY AREA

For the purposes of this study, consideration was given to recent crash data on the roadways and intersections within the study area. Specifically, data was collected from the Tennessee Department of Transportation (TDOT) database, known as E-TRIMS (Tennessee Roadway Information Management System). The database was queried for incidents on Clayton Arnold Road, Critz Lane, Pantall Road, and Thompson's Station, E. from August 1, 2015 through August 31, 2018. The query results are included in Appendix E and summarized in Table 7. As shown, the plurality of the crashes on these roadways do not include a collision with another vehicle, and only 15% of the crashes include the more serious angle or head-on collisions. Also, 77.5% of the crashes within the study area included only property damage. These results indicate that the existing topography within the study area, including significant vertical curvature, contribute to the crashes on these roadways.

TABLE 7. SUMMARY OF RECENT CRASH DATA WITHIN THE STUDY AREA

D J	E	Tr.	TYPE OF COLLISION						SEVERITY			
Roadway	From	То	None	Side swipe	Rear- End Angle Head- On		Property Damages	Injuries	Fatalities			
Clayton Arnold Road	Critz Lane	Thompson's Station Road	Station 7 2 5 1 0		0	15	0	0				
Critz Lane	Columbia Pike	Lewisburg Pike	9	9 1 8 2 0 15 4		4	1					
Pantall Road	Critz Lane	Thompson's Station Road	4	1	1	0	0	4	2	0		
Thompson's Station, E.	Columbia Pike	Lewisburg Pike	15	4	11	8	1	28	11	0		
		TOTAL	35	8	25	11	1	62	17	1		

7. CONCLUSIONS AND RECOMMENDATIONS

The analyses presented in this study indicate the following information about the intersections within the study area:

Columbia Pike and Critz Lane

Based on analyses conducted for the purposes of this study, it is likely that this intersection will also warrant a second westbound right turn lane in the future, whether or not the proposed project is constructed. It is important to note that the proposed residential project will have a negligible impact on the peak hour traffic operations at this intersection.

Critz Lane and Clayton Arnold Road / Paddock Park Drive

The September 2015 Comprehensive Update that was prepared by RPM Transportation Consultants, LLC on behalf of the Town of Thompson's Station included the recommendation that a single-lane roundabout be provided at this intersection. Subsequently, the Town of Thompson's Station has retained Barge, Waggoner, Sumner & Cannon, Inc. (BWSC) to design improvements to Critz Lane, including providing a roundabout at the intersection with Clayton Arnold Road / Paddock Park Drive. Based on analyses conducted for the purposes of this study, each approach to the intersection would operate at LOS A during each peak hour under these conditions. It is important to note that the proposed residential project will have a relatively minor impact on the peak hour traffic operations at this intersection.

Critz Lane and Pantall Road

The September 2015 Comprehensive Update that was prepared by RPM Transportation Consultants, LLC on behalf of the Town of Thompson's Station included the recommendation that a single-lane roundabout be provided at this intersection. Subsequently, the Town of Thompson's Station has retained Barge, Waggoner, Sumner & Cannon, Inc. (BWSC) to design improvements to Critz Lane, including providing a roundabout at the intersection with Pantall Road. Based on analyses conducted for the purposes of this study, each approach to the intersection would operate at LOS B or better during each peak hour under these conditions. It is important to note that the proposed residential project will have a relatively minor impact on the peak hour traffic operations at this intersection.

Lewisburg Pike and Critz Lane

The Town of Thompson's Station and the Tennessee Department of Transportation (TDOT) have approved the construction of dedicated turn lanes and a traffic signal at this location. Even with these improvements, the eastbound left turns and northbound throughs will experience significant vehicle delays and queues during the AM peak hour. However, no additional improvements to this intersection can be provided without also widening Lewisburg Pike to a four- or five-lane corridor. It is important to note that the proposed residential project will have a relatively minor impact on the peak hour traffic operations at this intersection.

Thompson's Station Road, E. and Pantall Road

With existing stop conditions on Pantall Road and existing laneage at this intersection, the southbound left and right turns will operate at LOS F during both weekday peak hours, and the vehicle delays and queues are expected to be particularly significant during the PM peak hour.

Based on these results, additional analyses were conducted in order to identify how well this intersection would operate if an eastbound left turn lane and a traffic signal were provided at this intersection, as recommended in the 2015 Comprehensive Update prepared by RPM Transportation Consultants, LLC on behalf of the Town of Thompson's Station. The results of these additional analyses indicate that, under with these improvements, the intersection of Thompson's Station Road, E. and Pantall Road would operate at LOS B during the AM peak hour and LOS D during the PM peak hour. Further analyses were conducted in order to identify how well this intersection would operate if it were reconstructed as a single-lane roundabout. The additional analyses indicate that each approach would operate at LOS C or better during each peak hour under these conditions. It is important to note that the proposed residential project will have a relatively minor impact on the peak hour traffic operations at this intersection.

Thompson's Station Road, E. and Buckner Lane

Based on analyses conducted for the purposes of this study, the westbound and/or northbound turning movements are expected to operate poorly during both weekday peak hours. Specifically, these conditions will occur because no dedicated turn lanes are provided on either Thompson's Station Road, E. or Buckner Lane at this location. It is important to note that the proposed residential project will have a negligible impact on the peak hour traffic operations at this intersection.

Thompson's Station Road, E. and Clayton Arnold Road

With existing stop conditions on Clayton Arnold Road and existing laneage at this intersection, the southbound left turns are expected to operate at LOS F during the weekday PM peak hour. Because of the topography of this intersection, the Town of Thompson's Station has determined that a roundabout is not an appropriate treatment for this intersection. Therefore, it is possible that a traffic signal will be warranted at this intersection in the future. It is important to note that the proposed residential project will have a relatively minor impact on the peak hour traffic operations at this intersection.

Columbia Pike and Thompson's Station Road

With existing signalized conditions and existing laneage at this intersection, the intersection of Columbia Pike and Thompson's Station Road is expected to operate at LOS F during both peak hours, with significant vehicle delays and queues for multiple turning movements during both peak hours. Based on these results, additional analyses were conducted in order to identify how well this intersection would operate if an additional northbound through lane and southbound through lane were provided. The additional analyses indicate that the intersection of Columbia Pike and Thompson's Station Road would operate at LOS D during the AM peak hour and LOS F during the PM peak hour under these conditions. It is important to note that the proposed residential project will have a relatively minor impact on the peak hour traffic operations at this intersection.

Pantall Road and Northern Project Access

As planned, this project access should be constructed to include one eastbound entering lane and one westbound exiting lane, striped as a shared left and right turn lane at the intersection with Pantall Road. Also, a southbound left turn lane should be constructed on Pantall Road at the northern project access. This turn lane should include at least 100 feet of storage and should be

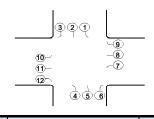
designed and constructed according to AASHTO standards. Also, this turn lane should be constructed when the project access is constructed.

Pantall Road and Southern Project Access

As planned, this project access should be constructed to include one eastbound entering lane and one westbound exiting lane, striped as a shared left and right turn lane at the intersection with Pantall Road. Also, a southbound left turn lane should be constructed on Pantall Road at the southern project access. This turn lane should include at least 100 feet of storage and should be designed and constructed according to AASHTO standards. Also, this turn lane should be constructed when the project access is constructed.

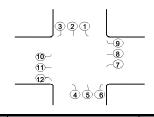
Critz Lane Corridor

The Town of Thompson's Station has retained Barge, Waggoner, Sumner & Cannon, Inc. (BWSC) to design improvements to Critz Lane from east of Columbia Pike to Pantall Road, including:


- widening Critz Lane to include two 11-foot travel lanes and 4-foot shoulders,
- correcting existing vertical geometry deficiencies along the corridor,
- providing roundabouts at the intersections with Clayton Arnold Road and Pantall Road,
- providing turn lanes at other side streets, and
- providing a multi-use path along the corridor.

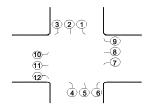
No additional improvements will be necessary in conjunction with the proposed residential project.

Potential Connectivity with Baugh Road


The eastern boundary of the proposed project site is contiguous to Baugh Road. However, Baugh Road is currently one-lane wide and has the design characteristics of a private driveway rather than a public roadway. Also, the intersection of Critz Lane and Baugh Road is not included in the planned improvements to Critz Lane. Finally, the analyses conducted for the purposes of this study indicate that the intersections of Pantall Road and the project accesses will operate acceptably with the full build-out of the 87 single-family homes proposed. Therefore, no connection to Baugh Road is recommended in conjunction with the proposed project. However, it would be appropriate to allow for a future connection to Baugh Road in the event that Baugh Road is reconstructed and additional development occurs east of the project site in the future.

APPENDIX A EXISTING TRAFFIC COUNTS

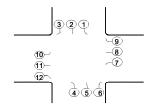
Columbia Pike and Critz Lane 11-Sep-18 Tue Burns signalized


		E/B			ine	V/B Critz La	v	Pike	Columbia l	S/B Columbia Pike N/B (S/B	LOCATION	
		12	11	10	9	8	7	6	5	4	3	2	1	TIME	
1	1,901				42		1	4	274			33	7	6:00-6:15	
7	2,127				72		5	1	262			62	2	6:15-6:30	
9	2,269				127		5	4	305			79	12	6:30-6:45	
6	2,386				178		7	2	306			97	14	6:45-7:00	
17	2,407				144		7		282			132	22	7:00-7:15	
8	2,428				142		8	1	248			124	23	7:15-7:30	
8	2,388				173		6	1	292			157	20	7:30-7:45	
15	2,195				171		8	5	249			159	33	7:45-8:00	
8	2,028				150		4	3	281			130	40	8:00-8:15	
					95		11	3	248			120	29	8:15-8:30	
					97		10	8	229			101	11	8:30-8:45	
					74		13	10	217			131	13	8:45-9:00	
9	2,199				51		2	12	139			208	80	4:00-4:15	
0	2,340				34		3	6	160			252	88	4:15-4:30	
0.0	2,420				39		6	13	169			221	110	4:30-4:45	
3	2,473				40		4	13	150			226	173	4:45-5:00	
5	2,345				59		7	14	192			186	175	5:00-5:15	
12	2,202				65			14	173			223	148	5:15-5:30	
2	2,082				69		3	21	154			224	140	5:30-5:45	
0	1,930				51		6	7	133			188	93	5:45-6:00	
6	1,756				34		2	9	162			211	72	6:00-6:15	
					27		2	12	145			231	86	6:15-6:30	
					35		4	20	148			199	53	6:30-6:45	
					19		4	9	88			141	43	6:45-7:00	
					1,988		128	192	5,006			3,835	1,487	TOTAL	
i	7:15-8:15				636		26	10	1,070			570	116	AM PK HR	
i	4:45-5:45				233		14	62	669			859	636	PM PK HR	
	0.94				0.92		0.81	0.50	0.92			0.90	0.73	AM PK PHF	
	0.98				0.84		0.50	0.74	0.87			0.95	0.91	PM PK PHF	

Critz Lane and Clayton Arnold Road / Paddock Park Drive 11-Sep-18 Tue Burns

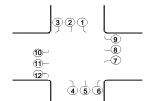
LOCATION: DATE: RECORDER: NOTES: unsignalized

	ie	/B Critz Laı	E	ne	V/B Critz La	V	d Road	ayton Arnol	N/B Cla	Drive	addock Park	S/B Pa	LOCATION
	12	11	10	9	8	7	6	5	4	3	2	1	TIME
440	4		1	2	4				23	2	1	2	6:00-6:15
598	1	2	1	2	6	2	1	4	51	3	4	3	6:15-6:30
747	9	2	3	6	15	3	1	1	97	9	2	1	6:30-6:45
789	11	3		4	20	10	2	1	105	10	6		6:45-7:00
744	25	3	1	5	17	28	1	1	99	7	10		7:00-7:15
644	28	1	1	5	21	35	16	8	93	5	13	3	7:15-7:30
521	19	4	2	5	19	15	9	9	96	9	3	1	7:30-7:45
499	13	3	1	3	14	13	3	4	69	3	1		7:45-8:00
475	14	6	1	2	8	6	6	4	43	2	4	1	8:00-8:15
	17	2	5	3	8	10	3	2	37	9	8	2	8:15-8:30
	24	1	2	5	12	20	14	13	53	7	18		8:30-8:45
	10	2	2	2	8	7	4	8	50	2	7	1	8:45-9:00
702	56	7	9	5	7	13	15	10	42	6	4		4:00-4:15
730	51	8	3	5	9	17	4	4	23	3	4	2	4:15-4:30
782	100	13	2	10	8	12	6	3	18	2	8	1	4:30-4:45
770	113	14	1	6	9	29	3	7	18	3	7	2	4:45-5:00
710	89	11	4	8	8	32	7	6	23	6	7	1	5:00-5:15
626	91	6		6	16	25	8	5	17	4	6	1	5:15-5:30
548	84	7	3	4	11	29	2	2	19	3	6	1	5:30-5:45
469	64	7	4	13	8	28	4		13	2	6	3	5:45-6:00
373	30	9	7	11	11	12	6	5	19	2	4	2	6:00-6:15
	29	8	6	8	7	8	4	4	21	5	5	2	6:15-6:30
	26	1	7	8	7	5	3	4	17	6	5	3	6:30-6:45
	26	5	2	4	4	11	1		3				6:45-7:00
	934	125	68	132	257	370	123	105	1,049	110	139	32	TOTAL
7:45	83	11	4	19	77	88	28	19	393	31	32	4	AM PK HR
5:30	393	44	7	30	41	98	24	21	76	15	28	5	PM PK HR
36	0.74	0.69	0.50	0.95	0.92	0.63	0.44	0.53	0.94	0.78	0.62	0.33	AM PK PHF
02	0.87	0.79	0.44	0.75	0.64	0.77	0.75	0.75	0.83	0.63	0.88	0.63	PM PK PHF

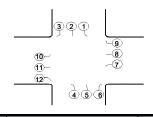


LOCATION: DATE: RECORDER: NOTES:

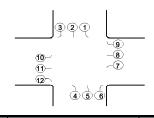
Critz Lane and Pantall Road 12-Sep-18 Wed Burns


RDER: Burns
S: unsignalized

LOCATION		S/B		N/	B Pantall Ro	oad		W/B Critz L	ane	F	E/B Critz La	ne	
TIME	1	2	3	4	5	6	7	8	9	10	11	12	
6:00-6:15						54	3	3			15	1	321
6:15-6:30				2		44	12	2			15	1	353
6:30-6:45				3		39	13	12			7		403
6:45-7:00				7		28	18	29			13		43
7:00-7:15				3		23	22	45			10	5	410
7:15-7:30				8		27	23	45			20	3	378
7:30-7:45				4		43	14	25			21	3	342
7:45-8:00				1		28	11	18			8		323
8:00-8:15				2		32	8	19			15		328
8:15-8:30				3		36	12	24			14	1	
8:30-8:45				4		35	11	18			21	2	
8:45-9:00						28	11	17			14	1	
4:00-4:15				1		14	92	21			23	7	670
4:15-4:30				4		10	101	38			21	2	673
4:30-4:45				2		13	111	34			13	4	685
4:45-5:00				6		7	95	34			16	1	696
5:00-5:15				2		15	90	36			16	2	712
5:15-5:30				1		15	91	47			24	10	708
5:30-5:45						18	90	58			14	8	680
5:45-6:00				2		11	103	45			11	3	632
6:00-6:15				2		17	91	31			16		579
6:15-6:30				1		9	93	31			25	1	
6:30-6:45						14	85	31			9	1	
6:45-7:00				1		9	68	29			15		
TOTAL				59		569	1,268	692			376	56	
AM PK HR				22		121	77	144			64	11	6:45-7:45
PM PK HR				5		59	374	186			65	23	5:00-6:00
3	3		3			39	3/4	100			03		3:00-0:00
M PK PHF				0.69		0.70	0.84	0.80			0.76	0.55	0.87
PM PK PHF]	1		0.63	1	0.82	0.91	0.80	1		0.68	0.58	0.95


Lewisburg Pike and Critz Lane 13-Sep-18 Thu Burns unsignalized

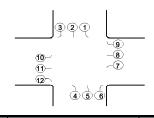
		ne	/B Critz La	E		W/B		Pike	//B Lewisburg Pike N/B Lewisburg P			S/B	LOCATION	
		12	11	10	9	8	7	6	5	4	3	2	1	TIME
7 2	1,467			77					148	1	6	8		6:00-6:15
5 3	1,645			62					258		18	21		6:15-6:30
1 4	1,711	1		48					300	5	31	22		6:30-6:45
7 4	1,727	2		39					342	3	42	33		6:45-7:00
) 4	1,650	2		51					283	2	46	34		7:00-7:15
1 4	1,511	3		46					291	8	45	32		7:15-7:30
) 4	1,369	9		51					290	3	34	36		7:30-7:45
3	1,223	7		51					240	4	36	46		7:45-8:00
5 2	1,086			46					160	7	28	38		8:00-8:15
2				44					164	5	34	36		8:15-8:30
2		4		53					147	7	38	28		8:30-8:45
2		1		48					119	2	36	41		8:45-9:00
7 .	1,687	4		16					64	7	131	189		4:00-4:15
1 4	1,691	7		26					56	4	125	201		4:15-4:30
1 4	1,701	9		22					59	3	132	201		4:30-4:45
3 .	1,693	8		23					59	3	122	216		4:45-5:00
5	1,665	7		24					60	5	124	195		5:00-5:15
7	1,557	9		27					68	2	112	211		5:15-5:30
3	1,453	5		28					62	4	107	212		5:30-5:45
2 .	1,292	5		24					57	1	135	181		5:45-6:00
3	1,143	6		27					42		112	120		6:00-6:15
		5		24					45	2	110	139		6:15-6:30
2		5		22					46	3	94	87		6:30-6:45
2		4		26					45	2	76	101		6:45-7:00
		103		905					3,405	83	1,774	2,428		TOTAL
	6:45-7:45	16		187					1,206	16	167	135		AM PK HR
	4:30-5:30	33		96					246	13	490	823		PM PK HR
	0.94	0.44		0.92					0.88	0.50	0.91	0.94		AM PK PHF
	0.99	0.92		0.92					0.90	0.65	0.91	0.94		PM PK PHF


Thompson's Station Road and Pantall Road 20-Sep-18 Thu Burns unsignalized

LOCATION	S/1	B Pantall Ro	oad		N/B		W/B TI	hompson's S	tation Rd	E/B Th	ompson's St	ation Rd	
TIME	1	2	3	4	5	6	7	8	9	10	11	12	
6:00-6:15	1		7					8		65	52		4
6:15-6:30			8					6	2	35	69		5
6:30-6:45	1		14					11	2	47	39		5
6:45-7:00			19					22	1	30	44		6
7:00-7:15	3		28					42	4	43	48		6
7:15-7:30			34					65	7	34	61		60
7:30-7:45	1		17					29	2	51	60		5:
7:45-8:00	1		10					17		38	63		54
8:00-8:15	1		10					22		34	48		5
8:15-8:30	3		21					23		48	58		
8:30-8:45	1		8					36		39	61		
8:45-9:00			11					34		25	31		
4:00-4:15	5		103					46	1	12	31		74
4:15-4:30	2		105					55		11	24		75
4:30-4:45	1		102					47	2	14	31		73
4:45-5:00	1		58					46	1	12	35		75
5:00-5:15	2		88					50		11	54		79
5:15-5:30	4		88					39	1	10	41		78
5:30-5:45			92					66	1	18	38		80
5:45-6:00	2		99					53	2	15	25		78
6:00-6:15			104					44	1	10	31		73
6:15-6:30	1		102					40		17	39		
6:30-6:45	5		104					46	1	10	30		
6:45-7:00			55					33		18	46		
TOTAL	35		1,287					880	28	647	1,059		
AM PK HR	5		89					153	13	166	232	7:	00-8:00
PM PK HR	3		397					203	4	60	133	5:	30-6:30
AM PK PHF	0.42		0.65					0.59	0.46	0.81	0.92		0.82
PM PK PHF	0.38		0.95					0.77	0.50	0.83	0.85		0.93

Thompson's Station Road and Buckner Lane 19-Sep-18 Wed Burns signalized

	tion Rd	ompson's Sta	E/B Tho	ation Rd	nompson's St	W/B Th	ane	Buckner L	N/E		S/B		OCATION
	12	11	10	9	8	7	6	5	4	3	2	1	TIME
	5				1	7	103		51				6:00-6:15
1	4				4	12	115		82				6:15-6:30
	14				8	15	80		143				6:30-6:45
	14	2			11	32	72		161				6:45-7:00
1	30	1			11	41	85		140				7:00-7:15
1	39	4			19	63	89		145				7:15-7:30
	24	9			20	43	104		117				7:30-7:45
	11	2			18	42	101		134				7:45-8:00
	16	5			18	14	97		89				8:00-8:15
	19	8			6	36	74		95				8:15-8:30
	39	4			11	34	92		99				8:30-8:45
	35	8			14	36	52		63				8:45-9:00
	99	26			8	134	35		20				4:00-4:15
	88	17			8	126	46		22				4:15-4:30
	121	14			8	142	42		30				4:30-4:45
	130	15			10	146	43		40				4:45-5:00
	147	17			7	134	41		29				5:00-5:15
	98	7			10	156	41		36				5:15-5:30
	125	17			4	137	36		22				5:30-5:45
	116	18			10	139	35		26				5:45-6:00
	67	8			10	139	39		34				6:00-6:15
	61	15			8	108	37		38				6:15-6:30
	53	5			15	124	30		23				6:30-6:45
	38	7			7	94	29		23				6:45-7:00
	1,393	209			246	1,954	1,518		1,662				TOTAL
:00-8	104	16			68	189	379		536				M PK HR
:30-5	496	53			35	578	167		135				M PK HR
			-										
0.9	0.67	0.44			0.85	0.75	0.91		0.92				M PK PHF
0.9	0.84	0.78			0.88	0.93	0.97		0.84				M PK PHF



Thompson's Station Road and Clayton Arnold Road 18-Sep-18 Tue Burns

LOCATION: DATE: RECORDER: NOTES:

unsignalized

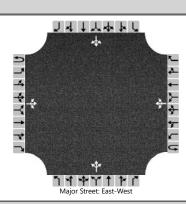
LOCATION	S/B C	layton Arnol	d Road		N/B		W/B T	hompson's S	tation Rd	E/B Th	ompson's St	ation Rd		
TIME	1	2	3	4	5	6	7	8	9	10	11	12		
6:00-6:15	4		2					22	33	3	1		518	
6:15-6:30	3		1					31	62				664	
6:30-6:45	6		3					52	87	2	7		797	
6:45-7:00	6		4					58	121	5	5		835	
7:00-7:15	18		8					46	122	3	14		790	
7:15-7:30	25		16					41	129	9	10		703	
7:30-7:45	32		16					63	76	1	7		613	
7:45-8:00	13		4					47	77	5	8		612	
8:00-8:15	10		6					33	57	6	12		604	
8:15-8:30	8		10					48	62	5	7			
8:30-8:45	41		26					39	66	13	9			
8:45-9:00	37		25					44	20	4	16			
4:00-4:15	99		24					17	22	8	32		744	
4:15-4:30	66		9					20	30	10	29		764	
4:30-4:45	97		9					19	17	8	21		834	
4:45-5:00	121		13					17	14	8	34		907	
5:00-5:15	134		17					15	19	7	30		907	
5:15-5:30	149		17					17	16	6	29		832	
5:30-5:45	160		13					11	24	9	27		735	
5:45-6:00	121		20					16	21	10	19		598	
6:00-6:15	65		12					21	20	9	20		485	
6:15-6:30	53		12					14	26	6	26			
6:30-6:45	37		16					15	12	8	19			
6:45-7:00	32		6					5	11	7	33		I	
TOTAL	1,337		289					711	1,144	152	415			
AM PK HR	81		44					208	448	18	36		6:45-7:45	
PM PK HR	564		60					60	73	30	120		4:45-5:45	
AM PK PHF	0.63		0.69					0.83	0.87	0.50	0.64		0.91	
PM PK PHF	0.88		0.88					0.88	0.76	0.83	0.88		0.93	

Columbia Pike and Thompson's Station Road 18-Sep-18 Tue Burns signalized

	ation Rd	ompson's Sta	E/B Tho	ation Rd	ompson's St	W/B Tł	Pike	Columbia I	N/R	ike	Columbia P	S/B	LOCATION
	12	11	10	9	8	7	6	5	4	3	2	1	TIME
1,657	1	3	8	13		4	4	275	5		38	1	6:00-6:15
1,789	5		10	34	4	4	4	263	12	1	61	6	6:15-6:30
1,867	9	3	12	43	5	3	5	271	10		66	2	6:30-6:45
1,958	9	5	8	48	7	4	3	273	6	4	104	1	6:45-7:00
1,966	24	4	9	36	13	10	7	227	22	3	119	10	7:00-7:15
1,980	11	3	7	35	15	12	9	241	18	4	123	4	7:15-7:30
1,976	24	3	8	36	10	15	6	251	12	8	145	2	7:30-7:45
1,915	19	8	4	38	15	10	4	228	8	9	135	2	7:45-8:00
1,881	24	4	15	27	16	14	7	229	14	12	132	4	8:00-8:15
	25	6	12	30	11	12	13	222	20	9	114	4	8:15-8:30
	16	6	8	23	11	21	12	231	25	3	99	4	8:30-8:45
	26	8	7	18	16	27	7	178	38	7	110	4	8:45-9:00
1,962	32	16	15	6	13	19	17	132	13	11	192	8	4:00-4:15
2,010	27	19	10	6	8	15	18	148	16	5	205	4	4:15-4:30
2,023	28	9	11	14	8	20	24	146	21	5	199	3	4:30-4:45
2,032	50	7	13	7	7	17	26	162	15	5	204	6	4:45-5:00
1,969	36	8	13	7	11	20	18	169	21	3	213	3	5:00-5:15
1,960	32	12	7	10	12	17	12	171	23	3	179	16	5:15-5:30
1,951	46	7	9	5	4	13	22	160	24	5	194	8	5:30-5:45
1,884	17	8	10	10	8	19	20	121	14	9	213	7	5:45-6:00
1,761	25	9	9	7	8	15	18	177	14	5	216	10	6:00-6:15
	31	3	6	13	5	20	19	151	19	3	200	15	6:15-6:30
	21	8	7	7	4	5	14	115	11	3	223	12	6:30-6:45
	8	5	4	6	5	14	10	102	10	3	156	10	6:45-7:00
	546	164	222	479	216	330	299	4,643	391	120	3,640	146	TOTAL
5-8:15	78	18	34	136	56	51	26	949	52	33	535	12	AM PK HR
5-5:45	164	34	42	29	34	67	78	662	83	16	790	33	PM PK HR
).95	0.81	0.56	0.57	0.89	0.88	0.85	0.72	0.95	0.72	0.69	0.92	0.75	AM PK PHF
).95).97	0.81	0.56	0.81	0.89	0.88	0.85	0.72	0.95	0.72	0.89	0.92	0.75	PM PK PHF

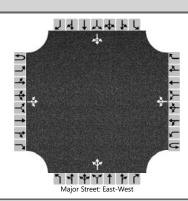
APPENDIX B CAPACITY ANALYSES

EXISTING WEEKDAY CONDITIONS

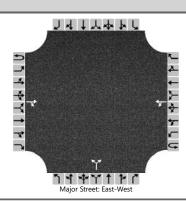

HCS7 Signalized Intersection Results Summary Intersection Information 747477 **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date 12/21/2014 Area Type Other PHF 0.94 Jurisdiction Thompson's Station, TN Time Period AM Peak Hour Urban Street Columbia Pike Analysis Year 2018 (Existing) **Analysis Period** 1> 7:00 Intersection Columbia Pk and Critz L... File Name 1 exam.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 1070 10 Demand (v), veh/h 26 636 116 570 **Signal Information** Cycle, s 90.0 Reference Phase 2 Offset, s 0 Reference Point End Green 5.7 32.3 0.0 34.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 2.0 0.0 On Red 2.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 8 2 1 6 Case Number 9.0 8.3 1.0 4.0 Phase Duration, s 40.0 38.3 11.7 50.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.4 0.0 3.1 0.0 Queue Clearance Time (g_s), s 36.0 5.7 Green Extension Time (g_e), s 0.0 0.0 0.2 0.0 Phase Call Probability 1.00 0.95 1.00 Max Out Probability 0.00 SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 3 18 2 12 1 6 Adjusted Flow Rate (v), veh/h 28 677 575 574 123 606 1810 1900 1894 1810 1809 Adjusted Saturation Flow Rate (s), veh/h/ln 1610 0.9 34.0 32.6 25.1 3.7 9.3 Queue Service Time (g_s), s Cycle Queue Clearance Time (g c), s 0.9 34.0 32.6 25.1 3.7 9.3 0.44 Green Ratio (g/C) 0.38 0.44 0.36 0.36 0.49 679 Capacity (c), veh/h 684 711 681 195 1769 Volume-to-Capacity Ratio (X) 0.040 0.952 0.845 0.845 0.632 0.343 Back of Queue (Q), ft/ln (95 th percentile) 15.8 596.9 472.5 471.4 67.1 164.3 Back of Queue (Q), veh/ln (95 th percentile) 0.6 23.9 18.9 18.9 2.7 6.6 Queue Storage Ratio (RQ) (95 th percentile) 0.16 3.73 0.94 0.94 0.42 0.33 21.4 Uniform Delay (d 1), s/veh 17.7 24.2 26.6 26.6 14.1 Incremental Delay (d 2), s/veh 0.0 22.4 12.2 12.3 1.3 0.5 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 17.7 46.7 38.8 38.8 22.7 14.7 Level of Service (LOS) В D D D С В 0.0 45.5 D 38.8 D 16.0 Approach Delay, s/veh / LOS В Intersection Delay, s/veh / LOS 34.2 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.15 В 2.32 В 0.70 1.91 В Α Bicycle LOS Score / LOS 1.44 Α 1.09 Α

HCS7 Signalized Intersection Results Summary Intersection Information 747477 **General Information** Agency FTG Duration, h 0.25 FTG Analysis Date 12/21/2014 Analyst Area Type Other PHF 0.98 Jurisdiction Thompson's Station, TN Time Period PM Peak Hour Urban Street Columbia Pike Analysis Year 2018 (Existing) **Analysis Period** 1> 7:00 Intersection Columbia Pk and Critz L... File Name 1 expm.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 669 62 636 Demand (v), veh/h 14 233 859 **Signal Information** 160 Cycle, s 90.0 Reference Phase 2 Offset, s 0 Reference Point End Green 18.9 47.1 0.0 6.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 0.0 On Red 2.0 2.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 8 2 1 6 Case Number 9.0 8.3 1.0 4.0 Phase Duration, s 12.0 53.1 24.9 78.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.4 0.0 3.1 0.0 Queue Clearance Time (g_s), s 8.0 17.5 Green Extension Time (g_e), s 0.0 0.0 1.4 0.0 Phase Call Probability 1.00 1.00 1.00 0.00 Max Out Probability SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 3 18 2 12 1 6 Adjusted Flow Rate (v), veh/h 14 238 378 368 649 877 1810 1610 1900 1843 1810 1809 Adjusted Saturation Flow Rate (s), veh/h/ln 0.7 6.0 18.1 10.7 15.5 5.8 Queue Service Time (g_s), s Cycle Queue Clearance Time (g c), s 0.7 6.0 18.1 10.7 15.5 5.8 0.28 0.76 Green Ratio (g/C) 0.07 0.52 0.52 0.80 964 694 Capacity (c), veh/h 121 446 993 2894 Volume-to-Capacity Ratio (X) 0.118 0.533 0.381 0.381 0.935 0.303 Back of Queue (Q), ft/ln (95 th percentile) 13.3 190.8 198.7 194.6 295.3 53.6 Back of Queue (Q), veh/ln (95 th percentile) 0.5 7.6 7.9 7.8 11.8 2.1 Queue Storage Ratio (RQ) (95 th percentile) 0.13 1.19 0.40 0.39 1.85 0.11 27.6 12.8 14.6 Uniform Delay (d 1), s/veh 39.5 12.8 2.4 Incremental Delay (d 2), s/veh 0.2 0.6 1.1 1.1 2.8 0.3 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 39.7 28.2 13.9 13.9 17.4 2.6 Level of Service (LOS) D С В В В Α 0.0 28.9 С 13.9 В 8.9 Approach Delay, s/veh / LOS Α Intersection Delay, s/veh / LOS 12.4 В **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.15 В 2.32 В 1.89 0.62 В Α Bicycle LOS Score / LOS 1.10 Α 1.75

HCS7 Signalized Intersection Results Summary Intersection Information 747477 **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date 12/21/2014 Area Type Other PHF 0.94 Jurisdiction Thompson's Station, TN Time Period AM Peak Hour Urban Street Columbia Pike Analysis Year 2018 (Existing) **Analysis Period** 1> 7:00 Columbia Pk and Critz L... File Name Intersection 1 exam imp.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 1070 10 Demand (v), veh/h 26 636 116 570 **Signal Information** Cycle, s 60.0 Reference Phase 2 Offset, s 0 Reference Point End Green 5.2 25.8 0.0 11.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 2.0 0.0 On Red 2.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 8 2 1 6 Case Number 9.0 8.3 1.0 4.0 Phase Duration, s 17.0 31.8 11.2 43.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.4 0.0 3.1 0.0 Queue Clearance Time (g_s), s 13.0 4.0 Green Extension Time (g_e), s 0.0 0.0 0.2 0.0 Phase Call Probability 1.00 0.87 1.00 0.00 Max Out Probability SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 3 18 2 12 1 6 Adjusted Flow Rate (v), veh/h 28 677 575 574 123 606 1810 1425 1900 1894 1810 1809 Adjusted Saturation Flow Rate (s), veh/h/ln 0.8 11.0 21.7 14.9 2.0 4.6 Queue Service Time (g_s), s Cycle Queue Clearance Time (g c), s 8.0 11.0 21.7 14.9 2.0 4.6 0.27 0.43 0.55 Green Ratio (g/C) 0.18 0.43 0.62 Capacity (c), veh/h 332 771 816 813 311 2231 Volume-to-Capacity Ratio (X) 0.083 0.877 0.705 0.705 0.396 0.272 Back of Queue (Q), ft/ln (95 th percentile) 13.4 222.4 265.1 264.6 27.1 57.6 Back of Queue (Q), veh/ln (95 th percentile) 0.5 8.9 10.6 10.6 1.1 2.3 Queue Storage Ratio (RQ) (95 th percentile) 0.13 1.39 0.53 0.53 0.17 0.12 14.0 12.4 Uniform Delay (d 1), s/veh 20.3 20.9 14.0 5.3 Incremental Delay (d 2), s/veh 0.0 10.8 5.1 5.1 0.3 0.3 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 20.4 31.8 19.1 19.1 12.7 5.6 Level of Service (LOS) С С В В В Α 0.0 31.3 С 19.1 В 6.8 Approach Delay, s/veh / LOS Α Intersection Delay, s/veh / LOS 19.0 В **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.13 В 2.30 В 2.08 0.66 В Α Bicycle LOS Score / LOS 1.44 Α 1.09 Α

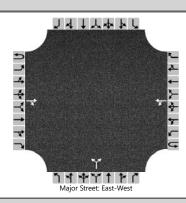

HCS7 Signalized Intersection Results Summary Intersection Information 747477 **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date 12/21/2014 Area Type Other PHF 0.98 Jurisdiction Thompson's Station, TN Time Period PM Peak Hour Urban Street Columbia Pike Analysis Year 2018 (Existing) **Analysis Period** 1> 7:00 Intersection Columbia Pk and Critz L... File Name 1 expm imp.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 669 62 636 Demand (v), veh/h 14 233 859 **Signal Information** 160 Cycle, s 90.0 Reference Phase 2 Offset, s 0 Reference Point End Green 18.9 47.1 0.0 6.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 0.0 On Red 2.0 2.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 8 2 1 6 Case Number 9.0 8.3 1.0 4.0 Phase Duration, s 12.0 53.1 24.9 78.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.4 0.0 3.1 0.0 Queue Clearance Time (g_s), s 7.9 17.5 Green Extension Time (g_e), s 0.0 0.0 1.4 0.0 Phase Call Probability 1.00 1.00 1.00 0.00 Max Out Probability SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 3 18 2 12 1 6 Adjusted Flow Rate (v), veh/h 14 238 378 368 649 877 1810 1425 1900 1843 1810 1809 Adjusted Saturation Flow Rate (s), veh/h/ln 0.7 5.9 18.1 10.7 15.5 5.8 Queue Service Time (g_s), s Cycle Queue Clearance Time (g c), s 0.7 5.9 18.1 10.7 15.5 5.8 0.28 0.76 Green Ratio (g/C) 0.07 0.52 0.52 0.80 964 694 Capacity (c), veh/h 121 790 993 2894 Volume-to-Capacity Ratio (X) 0.118 0.301 0.381 0.381 0.935 0.303 Back of Queue (Q), ft/ln (95 th percentile) 13.3 87.6 198.7 194.6 295.3 53.6 Back of Queue (Q), veh/ln (95 th percentile) 0.5 3.5 7.9 7.8 11.8 2.1 Queue Storage Ratio (RQ) (95 th percentile) 0.13 0.55 0.40 0.39 1.85 0.11 12.8 14.6 Uniform Delay (d 1), s/veh 39.5 25.7 12.8 2.4 Incremental Delay (d 2), s/veh 0.2 0.1 1.1 1.1 2.8 0.3 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 39.7 25.7 13.9 13.9 17.4 2.6 Level of Service (LOS) D С В В В Α 0.0 26.5 С 13.9 В 8.9 Approach Delay, s/veh / LOS Α Intersection Delay, s/veh / LOS 12.2 В **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.15 В 2.32 В 2.08 0.62 В Α Bicycle LOS Score / LOS 1.10 Α 1.75

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Critz and Clayton
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Critz Lane
Analysis Year	2018	North/South Street	Clayton Arnold/Paddock
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.86
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Existing)		

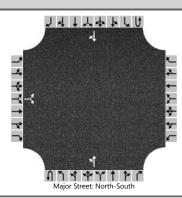

Vehicle Volumes and Adju	ıstme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		4	11	83		88	77	19		393	19	28		4	32	31
Percent Heavy Vehicles (%)		0				0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (%)										()			()	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.10				4.10				7.10	6.50	6.20		7.10	6.50	6.20
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30
Delay, Queue Length, and	l Leve	l of S	ervice													
Flow Rate, v (veh/h)		5				102					512				78	
Capacity, c (veh/h)		1491				1494					491				630	
v/c Ratio		0.00				0.07					1.04				0.12	
95% Queue Length, Q ₉₅ (veh)		0.0				0.2					15.2				0.4	
Control Delay (s/veh)		7.4				7.6					81.3				11.5	
Level of Service (LOS)		А				А					F				В	
Approach Delay (s/veh)		0.3				3	.9			81	.3			11	1.5	
Approach LOS											F				3	

	HCS7 Two-Way Stoր	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Critz and Clayton
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Critz Lane
Analysis Year	2018	North/South Street	Clayton Arnold/Paddock
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Existing)		

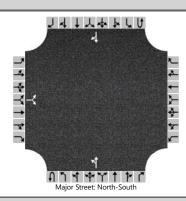
Vehicle Volumes and Adj	ustme	nts														
Approach		Eastk	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		7	44	393		98	41	30		76	21	24		5	28	15
Percent Heavy Vehicles (%)		0				0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (%))				0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.10				4.10				7.10	6.50	6.20		7.10	6.50	6.20
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		8				107					132				52	
Capacity, c (veh/h)		1534				1098					410				394	
v/c Ratio		0.00				0.10					0.32				0.13	
95% Queue Length, Q ₉₅ (veh)		0.0				0.3					1.4				0.5	
Control Delay (s/veh)		7.4				8.6					17.9				15.5	
Level of Service (LOS)		А				Α					С				С	
Approach Delay (s/veh)		0.2				5	.4			17	7.9			15	5.5	
Approach LOS										(<u> </u>			(C	


	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Critz and Pantall
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Critz Lane
Analysis Year	2018	North/South Street	Pantall Road
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.87
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Existing)		

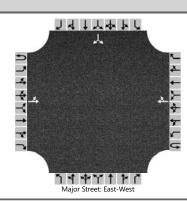
Vehicle Volumes and Adju	stme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			64	11		77	144			22		121				
Percent Heavy Vehicles (%)						0				0		0				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.10				6.40		6.20				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.20				3.50		3.30				
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)						89					164					
Capacity, c (veh/h)						1523					880					
v/c Ratio						0.06					0.19					
95% Queue Length, Q ₉₅ (veh)						0.2					0.7					
Control Delay (s/veh)						7.5					10.0					
Level of Service (LOS)						А					В					
Approach Delay (s/veh)						2	.9			10	0.0					
Approach LOS									I	3						


Generated: 9/26/2018 1:10:31 PM

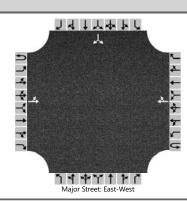
	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Critz and Pantall
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Critz Lane
Analysis Year	2018	North/South Street	Pantall Road
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Existing)		


Vehicle Volumes and Adju	stme	nts															
Approach		Eastb	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0	
Configuration				TR		LT					LR						
Volume (veh/h)			65	23		374	186			5		59					
Percent Heavy Vehicles (%)						0				0		0					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)						4.1				7.1		6.2					
Critical Headway (sec)						4.10				6.40		6.20					
Base Follow-Up Headway (sec)						2.2				3.5		3.3					
Follow-Up Headway (sec)						2.20				3.50		3.30					
Delay, Queue Length, and	Leve	l of S	ervice														
Flow Rate, v (veh/h)						394					67						
Capacity, c (veh/h)						1515					725						
v/c Ratio						0.26					0.09						
95% Queue Length, Q ₉₅ (veh)						1.0					0.3						
Control Delay (s/veh)						8.2					10.5						
Level of Service (LOS)						А					В						
Approach Delay (s/veh)				6.3			10.5										
Approach LOS										E.	3						

	HCS7 Two-Way Stop	o-Control Report						
General Information		Site Information	Information					
Analyst	FTG	Intersection	Lewisburg and Critz					
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN					
Date Performed	Sept 2018	East/West Street	Critz Lane					
Analysis Year	2018	North/South Street	Lewisburg Pike					
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.94					
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25					
Project Description	10886 (Existing)							


Approach		Facth	ound		Westbound					North	hound		Southbound				
Movement																	
	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	T	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0	
Configuration			LR							LT						TR	
Volume (veh/h)		187		16						16	1206				135	167	
Percent Heavy Vehicles (%)		0		0						0							
Proportion Time Blocked																	
Percent Grade (%)			0														
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up Ho	eadwa	ys															
Base Critical Headway (sec)		7.1		6.2						4.1							
Critical Headway (sec)		6.40		6.20						4.10							
Base Follow-Up Headway (sec)		3.5		3.3						2.2							
Follow-Up Headway (sec)		3.50		3.30						2.20							
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)	Π		216							17							
Capacity, c (veh/h)			129							1250							
v/c Ratio			1.67							0.01							
95% Queue Length, Q ₉₅ (veh)			15.9							0.0							
Control Delay (s/veh)			392.2							7.9						$\overline{}$	
Level of Service (LOS)			F							А							
Approach Delay (s/veh)	392.2							0.5									
Approach LOS			F														

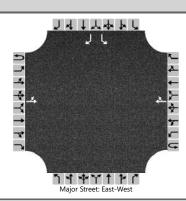
	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Lewisburg and Critz
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Critz Lane
Analysis Year	2018	North/South Street	Lewisburg Pike
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.99
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	10886 (Existing)		


Vehicle Volumes and Adju	stme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume (veh/h)		96		33						13	246				823	490
Percent Heavy Vehicles (%)		0		0						0						
Proportion Time Blocked																
Percent Grade (%)		()													
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.40		6.20						4.10						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.50		3.30						2.20						
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)			130							13						
Capacity, c (veh/h)			180							527						
v/c Ratio			0.72							0.02						
95% Queue Length, Q ₉₅ (veh)			4.5							0.1						
Control Delay (s/veh)			64.6							12.0						
Level of Service (LOS)			F							В						
Approach Delay (s/veh)		64	1.6					0.9								
Approach LOS		ı	F													

	HCS7 Two-Way Stoր	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Thompson's St and Pantall
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Thompson's Sta Road
Analysis Year	2018	North/South Street	Pantall Road
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.82
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Existing)		

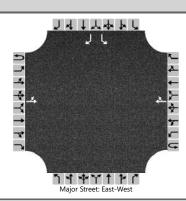
Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		166	232				153	13						5		89
Percent Heavy Vehicles (%)		0												0		0
Proportion Time Blocked																
Percent Grade (%)														(0	
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30
Delay, Queue Length, and	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		202													115	
Capacity, c (veh/h)		1381													762	
v/c Ratio		0.15													0.15	
95% Queue Length, Q ₉₅ (veh)		0.5													0.5	
Control Delay (s/veh)		8.1													10.6	
Level of Service (LOS)		А													В	
Approach Delay (s/veh)	4.2										10.6					
Approach LOS															В	

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Thompson's St and Pantall
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Thompson's Sta Road
Analysis Year	2018	North/South Street	Pantall Road
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Existing)		



Vehicle Volumes and Adju	stme	nts														
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		60	133				203	4						3		397
Percent Heavy Vehicles (%)		0												0		0
Proportion Time Blocked																
Percent Grade (%)														()	
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up Hea	adwa	ys														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)		65													430	
Capacity, c (veh/h)		1358													820	
v/c Ratio		0.05													0.52	
95% Queue Length, Q ₉₅ (veh)		0.1													3.1	
Control Delay (s/veh)		7.8													14.1	
Level of Service (LOS)		А													В	
Approach Delay (s/veh)		2	.7									14.1				
Approach LOS														I	3	

HCS7 Signalized Intersection Results Summary Intersection Information **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date Sep 26, 2018 Area Type Other PHF 0.90 Jurisdiction Thompson's Station, TN Time Period AM Peak Hour Urban Street Thompson's Station Road Analysis Year 2018 (Existing) **Analysis Period** 1> 7:00 Intersection Thompson's Sta and Bu... File Name 6 exam.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 104 Demand (v), veh/h 16 189 68 536 0 379 **Signal Information** Cycle, s 90.0 Reference Phase 2 Offset, s 0 Reference Point End Green 23.0 0.0 0.0 0.0 55.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 0.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S 2.0 0.0 On Red 2.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL **SBT Assigned Phase** 2 6 8 Case Number 8.0 8.0 12.0 Phase Duration, s 29.0 29.0 61.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 Max Allow Headway (MAH), s 0.0 0.0 3.2 Queue Clearance Time (g_s), s 52.5 Green Extension Time (g_e), s 0.0 0.0 2.5 Phase Call Probability 1.00 80.0 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R Т R L Т R L Т R L **Assigned Movement** 2 12 1 6 3 8 18 Adjusted Flow Rate (v), veh/h 133 286 1017 1644 Adjusted Saturation Flow Rate (s), veh/h/ln 1038 1721 5.9 17.1 Queue Service Time (g_s), s 50.5 Cycle Queue Clearance Time (g_c), s 5.9 23.0 50.5 0.26 0.26 Green Ratio (g/C) 0.61 Capacity (c), veh/h 420 335 1052 Volume-to-Capacity Ratio (X) 0.318 0.853 0.966 Back of Queue (Q), ft/ln (95 th percentile) 110.2 323.4 698 Back of Queue (Q), veh/ln (95 th percentile) 4.4 12.9 27.9 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 Uniform Delay (d 1), s/veh 27.1 37.1 16.6 Incremental Delay (d 2), s/veh 2.0 23.2 15.9 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 Control Delay (d), s/veh 29.1 60.3 32.5 Level of Service (LOS) С Ε С 29.1 С 60.3 Ε 32.5 С 0.0 Approach Delay, s/veh / LOS Intersection Delay, s/veh / LOS 37.7 D **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.41 1.41 1.73 1.73 Α Α В В Bicycle LOS Score / LOS 0.71 Α 0.96 Α 2.17 В


HCS7 Signalized Intersection Results Summary Intersection Information **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date Sep 26, 2018 Area Type Other PHF 0.95 Jurisdiction Thompson's Station, TN Time Period PM Peak Hour Urban Street Thompson's Station Road Analysis Year 2018 (Existing) **Analysis Period** 1> 7:00 Intersection Thompson's Sta and Bu... File Name 6 expm.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R Demand (v), veh/h 53 496 578 35 135 0 167 **Signal Information** Cycle, s 150.0 Reference Phase 2 Offset, s 0 Reference Point End Green 107.7 0.0 0.0 0.0 30.3 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 0.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S 2.0 0.0 On Red 2.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL **SBT Assigned Phase** 2 6 8 Case Number 8.0 8.0 12.0 Phase Duration, s 113.7 113.7 36.3 Change Period, (Y+Rc), s 6.0 6.0 6.0 Max Allow Headway (MAH), s 0.0 0.0 3.2 Queue Clearance Time (g_s), s 29.7 Green Extension Time (g_e), s 0.0 0.0 0.7 Phase Call Probability 1.00 0.00 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R Т R L Т R L Т R L **Assigned Movement** 2 12 1 6 3 8 18 Adjusted Flow Rate (v), veh/h 578 645 318 1634 688 1694 Adjusted Saturation Flow Rate (s), veh/h/ln 23.1 84.5 27.7 Queue Service Time (g_s), s 107.7 Cycle Queue Clearance Time (g_c), s 23.1 27.7 Green Ratio (g/C) 0.72 0.72 0.20 Capacity (c), veh/h 1173 541 342 Volume-to-Capacity Ratio (X) 0.493 1.194 0.929 Back of Queue (Q), ft/ln (95 th percentile) 316.8 1333 446.9 Back of Queue (Q), veh/ln (95 th percentile) 12.7 53.3 17.9 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 36.4 58.8 Uniform Delay (d 1), s/veh 9.2 104.2 Incremental Delay (d 2), s/veh 1.5 4.8 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 Control Delay (d), s/veh 10.7 140.6 63.6 Level of Service (LOS) В F Ε 10.7 В 140.6 F 63.6 Ε 0.0 Approach Delay, s/veh / LOS Intersection Delay, s/veh / LOS 76.0 Ε **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.35 1.35 1.75 1.75 Α Α В В Bicycle LOS Score / LOS 1.44 Α 1.55 1.01 Α

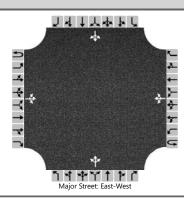
	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Thompson's St and Clayton
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Thompson's Sta Road
Analysis Year	2018	North/South Street	Clayton Arnold Road
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.91
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Existing)		

Approach		Eastb	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		1	0	1	
Configuration		LT						TR						L		R	
Volume (veh/h)		18	36				208	448						81		44	
Percent Heavy Vehicles (%)		0												0		0	
Proportion Time Blocked																	
Percent Grade (%)													0				
Right Turn Channelized														N	lo		
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		4.1												7.1		6.2	
Critical Headway (sec)		4.10												6.40		6.20	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.20												3.50		3.30	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)		20												89		48	
Capacity, c (veh/h)		890												486		594	
v/c Ratio		0.02												0.18		0.08	
95% Queue Length, Q ₉₅ (veh)		0.1												0.7		0.3	
Control Delay (s/veh)		9.1												14.1		11.6	
Level of Service (LOS)		А											В		В		
Approach Delay (s/veh)	3.2								13.2			3.2					
Approach LOS											В						

	HCS7 Two-Way Stoր	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Thompson's St and Clayton
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Thompson's Sta Road
Analysis Year	2018	North/South Street	Clayton Arnold Road
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Existing)		

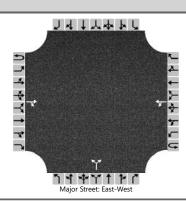
Vehicle Volumes and Adju	ıstme	nts															
Approach		Eastb	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		1	0	1	
Configuration		LT						TR						L		R	
Volume (veh/h)		30	120				60	73						564		60	
Percent Heavy Vehicles (%)		0												0		0	
Proportion Time Blocked																	
Percent Grade (%)													0				
Right Turn Channelized														Ν	lo		
Median Type Storage				Undi	vided												
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)		4.1												7.1		6.2	
Critical Headway (sec)		4.10												6.40		6.20	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.20												3.50		3.30	
Delay, Queue Length, and	l Leve	l of Se	ervice														
Flow Rate, v (veh/h)		32												606		65	
Capacity, c (veh/h)		1452												681		956	
v/c Ratio		0.02												0.89		0.07	
95% Queue Length, Q ₉₅ (veh)		0.1												11.1		0.2	
Control Delay (s/veh)		7.5												37.8		9.0	
Level of Service (LOS)		А											E		А		
Approach Delay (s/veh)	1.7											35.0					
Approach LOS											E						

HCS7 Signalized Intersection Results Summary Intersection Information 144444 **General Information** Agency FTG Duration, h 0.25 FTG 12/21/2014 Analyst Analysis Date Area Type Other PHF 0.95 Jurisdiction Thompson's Station, TN Time Period AM Peak Hour Urban Street Columbia Pike Analysis Year 2018 (Existing) **Analysis Period** 1> 7:00 Columbia Pk and Thom... File Name Intersection 8 exam.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 51 949 Demand (v), veh/h 34 18 78 56 136 52 26 12 535 33 **Signal Information** JI., Cycle, s 120.0 Reference Phase 2 BAT T Offset, s 0 Reference Point End Green 2.1 3.0 4.2 15.9 70.1 8.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 4.0 4.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 0.0 2.0 2.0 0.0 2.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 4 3 8 2 6 7 5 1 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 10.2 21.9 11.0 22.7 11.0 79.1 8.1 76.1 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 3.3 3.1 3.3 3.1 0.0 3.1 0.0 Queue Clearance Time (g_s), s 4.0 8.8 5.0 16.1 3.4 2.3 Green Extension Time (g_e), s 0.0 0.6 0.1 0.6 0.1 0.0 0.0 0.0 Phase Call Probability 0.70 1.00 0.83 1.00 0.84 0.34 0.00 0.00 0.00 0.00 0.00 0.00 Max Out Probability **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 7 4 14 3 8 18 5 2 12 1 6 16 Adjusted Flow Rate (v), veh/h 36 101 54 202 55 1026 13 598 1810 1658 1810 1685 1810 1891 1810 1880 Adjusted Saturation Flow Rate (s), veh/h/ln 2.0 3.0 14.1 1.4 55.7 0.3 23.3 Queue Service Time (g_s), s 6.8 Cycle Queue Clearance Time (q c), s 2.0 6.8 3.0 14.1 1.4 55.7 0.3 23.3 Green Ratio (g/C) 0.17 0.13 0.17 0.14 0.63 0.61 0.60 0.58 Capacity (c), veh/h 129 219 235 234 461 1152 163 1099 Volume-to-Capacity Ratio (X) 0.278 0.461 0.229 0.863 0.119 0.891 0.078 0.544 Back of Queue (Q), ft/ln (95 th percentile) 41.1 126.6 61.3 254.3 23.8 849.3 7.2 379.9 Back of Queue (Q), veh/ln (95 th percentile) 1.6 5.1 2.5 10.2 1.0 34.0 0.3 15.2 Queue Storage Ratio (RQ) (95 th percentile) 0.46 0.90 0.61 1.59 0.15 1.70 0.04 0.76 43.5 22.4 Uniform Delay (d 1), s/veh 48.1 42.4 50.5 11.1 20.1 15.2 Incremental Delay (d 2), s/veh 0.4 0.6 0.2 3.7 0.0 10.5 0.1 1.9 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 43.9 48.7 42.6 54.2 11.1 30.6 22.4 17.1 Level of Service (LOS) D D D D В C С В 47.4 51.8 29.6 С 17.3 Approach Delay, s/veh / LOS D D В Intersection Delay, s/veh / LOS 29.9 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.95 В 1.95 В 1.89 1.89 В В Bicycle LOS Score / LOS 0.71 Α 0.91 Α 2.27 В 1.49 Α

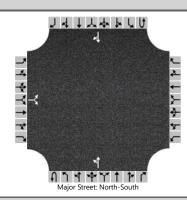

HCS7 Signalized Intersection Results Summary Intersection Information 144444 **General Information** Agency FTG Duration, h 0.25 FTG 12/21/2014 Analyst Analysis Date Area Type Other PHF 0.97 Jurisdiction Thompson's Station, TN Time Period PM Peak Hour Urban Street Columbia Pike Analysis Year 2018 (Existing) **Analysis Period** 1> 7:00 Columbia Pk and Thom... File Name Intersection 8 expm.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 34 67 34 29 Demand (v), veh/h 42 164 83 662 78 33 790 16 **Signal Information** JI., Cycle, s 120.0 Reference Phase 2 BAT T Offset, s 0 Reference Point End Green 4.1 4.6 17.0 1.6 67.9 8.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 4.0 0.0 4.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 0.0 2.0 2.0 0.0 2.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 4 3 8 2 6 7 5 1 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 10.6 23.0 11.4 23.9 11.7 75.5 10.1 73.9 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 3.3 3.1 3.3 3.1 0.0 3.1 0.0 Queue Clearance Time (g_s), s 4.4 16.5 5.9 5.9 4.3 2.9 Green Extension Time (g_e), s 0.1 0.5 0.0 0.6 0.2 0.0 0.0 0.0 Phase Call Probability 0.76 1.00 0.90 1.00 0.94 0.68 0.00 0.00 1.00 0.00 0.00 0.00 Max Out Probability **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 7 4 14 3 8 18 5 2 12 1 6 16 Adjusted Flow Rate (v), veh/h 43 204 69 65 86 763 34 831 1810 1653 1810 1755 1810 1865 1810 1893 Adjusted Saturation Flow Rate (s), veh/h/ln 2.4 14.5 3.9 3.9 2.3 35.0 0.9 40.7 Queue Service Time (g_s), s Cycle Queue Clearance Time (q c), s 2.4 14.5 3.9 3.9 2.3 35.0 0.9 40.7 Green Ratio (g/C) 0.18 0.14 0.19 0.15 0.61 0.58 0.60 0.57 Capacity (c), veh/h 264 235 167 261 297 1080 315 1071 Volume-to-Capacity Ratio (X) 0.164 0.870 0.414 0.249 0.288 0.706 0.108 0.776 Back of Queue (Q), ft/ln (95 th percentile) 48.6 256.7 78.6 77.2 40.1 542.3 16.1 637.1 Back of Queue (Q), veh/ln (95 th percentile) 1.9 10.3 3.1 3.1 1.6 21.7 0.6 25.5 Queue Storage Ratio (RQ) (95 th percentile) 0.54 1.83 0.79 0.48 0.25 1.08 0.10 1.27 41.4 Uniform Delay (d 1), s/veh 50.4 42.2 45.1 17.4 18.0 15.3 20.2 Incremental Delay (d 2), s/veh 0.1 3.8 0.6 0.2 0.2 3.9 0.1 5.5 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 41.5 54.2 42.8 45.3 17.6 21.9 15.3 25.7 Level of Service (LOS) D D D D В В C С 52.0 44.0 21.5 С 25.2 C Approach Delay, s/veh / LOS D D Intersection Delay, s/veh / LOS 28.1 С **Multimodal Results** ΕB WB NB SB Pedestrian LOS Score / LOS 1.95 В 1.95 В 1.89 В 1.89 В Bicycle LOS Score / LOS 0.90 Α 0.71 Α 1.89 В 1.91

EXISTING SATURDAY CONDITIONS

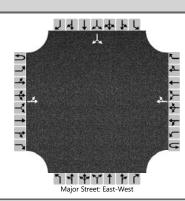
HCS7 Signalized Intersection Results Summary Intersection Information 747477 **General Information** Agency FTG Duration, h 0.25 FTG Analysis Date 12/21/2014 Analyst Area Type Other PHF 0.98 Jurisdiction Thompson's Station, TN Time Period PM Peak Hour Urban Street Columbia Pike Analysis Year 2018 (Existing) **Analysis Period** 1> 7:00 Intersection Columbia Pk and Critz L... File Name 1 expm.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R R L R L R 83 Demand (v), veh/h 5 216 20 55 277 **Signal Information** Cycle, s 50.0 Reference Phase 2 Offset, s 0 Reference Point End Green 3.2 24.5 0.0 4.3 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 2.0 0.0 On Red 2.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 8 2 1 6 Case Number 9.0 8.3 1.0 4.0 Phase Duration, s 10.3 30.5 9.2 39.7 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.4 0.0 3.1 0.0 Queue Clearance Time (g_s), s 4.4 2.6 Green Extension Time (g_e), s 0.0 0.0 0.1 0.0 Phase Call Probability 0.71 0.54 1.00 0.00 Max Out Probability SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 3 18 2 12 1 6 Adjusted Flow Rate (v), veh/h 5 85 121 120 56 283 1810 1610 1900 1843 1810 1809 Adjusted Saturation Flow Rate (s), veh/h/ln 0.1 2.4 2.8 1.8 0.6 1.4 Queue Service Time (g_s), s Cycle Queue Clearance Time (g_c), s 0.1 2.4 2.8 1.8 0.6 1.4 0.49 0.59 0.67 Green Ratio (g/C) 0.09 0.15 0.49 Capacity (c), veh/h 155 242 930 902 763 2440 Volume-to-Capacity Ratio (X) 0.033 0.349 0.130 0.133 0.074 0.116 Back of Queue (Q), ft/ln (95 th percentile) 2.3 35.8 26.5 26.3 6.6 11.2 Back of Queue (Q), veh/ln (95 th percentile) 0.1 1.4 1.1 1.1 0.3 0.4 Queue Storage Ratio (RQ) (95 th percentile) 0.02 0.22 0.05 0.05 0.04 0.02 7.0 Uniform Delay (d 1), s/veh 21.0 19.0 7.0 4.5 2.9 Incremental Delay (d 2), s/veh 0.0 0.3 0.3 0.3 0.0 0.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 21.0 19.4 7.2 7.3 4.5 3.0 Level of Service (LOS) С В Α Α Α Α 0.0 19.5 В 7.3 Α 3.2 Approach Delay, s/veh / LOS Α Intersection Delay, s/veh / LOS 6.9 Α **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.13 В 2.30 В 1.87 0.64 В Α Bicycle LOS Score / LOS 0.69 Α 0.77 Α


HCS7 Signalized Intersection Results Summary Intersection Information 747477 **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date 12/21/2014 Area Type Other PHF 0.98 Jurisdiction Thompson's Station, TN Time Period PM Peak Hour Urban Street Columbia Pike Analysis Year 2018 (Existing) **Analysis Period** 1> 7:00 Intersection Columbia Pk and Critz L... File Name 1 expm imp.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R Demand (v), veh/h 5 83 216 20 55 277 **Signal Information** Cycle, s 50.0 Reference Phase 2 Offset, s 0 Reference Point End Green 3.2 24.5 0.0 4.3 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 0.0 On Red 2.0 2.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 8 2 1 6 Case Number 9.0 8.3 1.0 4.0 Phase Duration, s 10.3 30.5 9.2 39.7 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.4 0.0 3.1 0.0 Queue Clearance Time (g_s), s 3.3 2.6 Green Extension Time (g_e), s 0.0 0.0 0.0 0.0 Phase Call Probability 0.71 0.54 1.00 0.00 Max Out Probability SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 3 18 2 12 1 6 Adjusted Flow Rate (v), veh/h 5 85 121 120 56 283 1810 1425 1900 1843 1810 1809 Adjusted Saturation Flow Rate (s), veh/h/ln 0.1 1.3 2.3 1.8 0.6 1.4 Queue Service Time (g_s), s Cycle Queue Clearance Time (g_c), s 0.1 1.3 2.3 1.8 0.6 1.4 0.49 0.59 0.67 Green Ratio (g/C) 0.09 0.15 0.49 429 Capacity (c), veh/h 155 930 902 774 2440 Volume-to-Capacity Ratio (X) 0.033 0.197 0.130 0.133 0.073 0.116 Back of Queue (Q), ft/ln (95 th percentile) 2.3 17.2 26.5 26.3 6.6 11.2 Back of Queue (Q), veh/ln (95 th percentile) 0.1 0.7 1.1 1.1 0.3 0.4 Queue Storage Ratio (RQ) (95 th percentile) 0.02 0.11 0.05 0.05 0.04 0.02 18.6 7.0 Uniform Delay (d 1), s/veh 21.0 7.0 4.4 2.9 Incremental Delay (d 2), s/veh 0.0 0.1 0.3 0.3 0.0 0.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 21.0 18.7 7.2 7.3 4.5 3.0 Level of Service (LOS) С В Α Α Α Α 0.0 18.8 В 7.3 Α 3.2 Approach Delay, s/veh / LOS Α Intersection Delay, s/veh / LOS 6.8 Α **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.13 В 2.30 В 2.06 0.64 В Α Bicycle LOS Score / LOS 0.69 Α 0.77 Α

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Critz and Clayton
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Critz Lane
Analysis Year	2018	North/South Street	Clayton Arnold/Paddock
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Existing)		

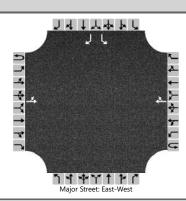

Vehicle Volumes and Adj	ustille															
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		5	23	47		16	27	18		46	9	16		8	11	15
Percent Heavy Vehicles (%)		0				0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (%)										()		0			
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up Ho	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.10				4.10				7.10	6.50	6.20		7.10	6.50	6.20
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		5				17					77				37	
Capacity, c (veh/h)		1571				1536					825				855	
v/c Ratio		0.00				0.01					0.09				0.04	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.3				0.1	
Control Delay (s/veh)		7.3				7.4					9.8				9.4	
Level of Service (LOS)		A				Α			A						А	
Approach Delay (s/veh)	0.5 2.0						9.8				9.4					
Approach LOS								A A								

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Critz and Pantall
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Critz Lane
Analysis Year	2018	North/South Street	Pantall Road
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Existing)		


Approach		Easth	ound			Westl	ound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U	L	Т	R
	+	_			-				0	_						-
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			43	4		28	58			3		35				
Percent Heavy Vehicles (%)						0				0		0				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.10				6.40		6.20				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.20				3.50		3.30				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)						29					40					
Capacity, c (veh/h)						1570					1006					
v/c Ratio						0.02					0.04					
95% Queue Length, Q ₉₅ (veh)						0.1					0.1					
Control Delay (s/veh)						7.3					8.7					
Level of Service (LOS)						Α					А					
Approach Delay (s/veh)						2	.5		8.7							
Approach LOS											4					

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Lewisburg and Critz
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Critz Lane
Analysis Year	2018	North/South Street	Lewisburg Pike
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.99
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	10886 (Existing)		

Vehicle Volumes and Adju	ıstme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume (veh/h)		58		20						8	256				266	78
Percent Heavy Vehicles (%)		0		0						0						
Proportion Time Blocked																
Percent Grade (%)		(0													
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.40		6.20						4.10						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.50		3.30						2.20						
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)			79							8						
Capacity, c (veh/h)			522							1223						
v/c Ratio			0.15							0.01						
95% Queue Length, Q ₉₅ (veh)			0.5							0.0						
Control Delay (s/veh)			13.1							8.0						
Level of Service (LOS)			В							А						
Approach Delay (s/veh)	13.1							0.3								
Approach LOS	В															


	HCS7 Two-Way Stoր	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Thompson's St and Pantall
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Thompson's Sta Road
Analysis Year	2018	North/South Street	Pantall Road
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Existing)		

Approach		Eastb	ound			West	oound			North	bound			South	bound		
Movement	U	L	T	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0	
Configuration		LT						TR							LR		
Volume (veh/h)		35	157				245	3						2		30	
Percent Heavy Vehicles (%)		0												0		0	
Proportion Time Blocked																	
Percent Grade (%)													0				
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		4.1												7.1		6.2	
Critical Headway (sec)		4.10												6.40		6.20	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.20												3.50		3.30	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)	T	38													34		
Capacity, c (veh/h)		1309													754		
v/c Ratio		0.03													0.05		
95% Queue Length, Q ₉₅ (veh)		0.1													0.1		
Control Delay (s/veh)		7.8													10.0		
Level of Service (LOS)		А													В		
Approach Delay (s/veh)	1.6												10.0				
Approach LOS							В				 В						

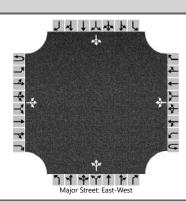
HCS7 Signalized Intersection Results Summary Intersection Information **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date Sep 26, 2018 Area Type Other PHF 0.95 Jurisdiction Thompson's Station, TN Time Period PM Peak Hour **Urban Street** Thompson's Station Road Analysis Year 2018 (Existing) **Analysis Period** 1> 7:00 Intersection Thompson's Sta and Bu... File Name 6 expm.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R Demand (v), veh/h 53 149 246 29 105 0 139 **Signal Information** Cycle, s 150.0 Reference Phase 2 Offset, s 0 Reference Point End 0.0 0.0 0.0 Green 113.1 24.9 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 0.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S 0.0 On Red 2.0 2.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL **SBT Assigned Phase** 2 6 8 Case Number 8.0 8.0 12.0 Phase Duration, s 119.1 119.1 30.9 Change Period, (Y+Rc), s 6.0 6.0 6.0 Max Allow Headway (MAH), s 0.0 0.0 3.2 Queue Clearance Time (g_s), s 24.4 Green Extension Time (g_e), s 0.0 0.0 0.5 Phase Call Probability 1.00 0.00 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R Т R L Т R L Т R L **Assigned Movement** 2 12 1 6 3 8 18 Adjusted Flow Rate (v), veh/h 213 289 257 1677 Adjusted Saturation Flow Rate (s), veh/h/ln 1182 1690 12.5 22.4 Queue Service Time (g_s), s 5.4 Cycle Queue Clearance Time (g_c), s 5.4 17.8 22.4 0.75 0.75 Green Ratio (g/C) 0.17 Capacity (c), veh/h 1264 936 281 Volume-to-Capacity Ratio (X) 0.168 0.309 0.914 Back of Queue (Q), ft/ln (95 th percentile) 80.6 151.9 376.2 Back of Queue (Q), veh/ln (95 th percentile) 3.2 6.1 15.0 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 7.6 Uniform Delay (d 1), s/veh 5.2 61.5 4.9 Incremental Delay (d 2), s/veh 0.3 0.9 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 Control Delay (d), s/veh 5.5 8.5 66.4 Level of Service (LOS) Α Α Ε 5.5 8.5 66.4 Ε 0.0 Approach Delay, s/veh / LOS Α Α Intersection Delay, s/veh / LOS 27.2 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.34 1.34 1.75 1.75 Α Α В В Bicycle LOS Score / LOS 0.84 Α 0.97 Α 0.91 Α

	HCS7 Two-Way Stoր	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Thompson's St and Clayton
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Thompson's Sta Road
Analysis Year	2018	North/South Street	Clayton Arnold Road
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Existing)		

Vehicle Volumes and Adju	ıstme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		LT						TR						L		R
Volume (veh/h)		15	59				60	74						143		76
Percent Heavy Vehicles (%)		0												0		0
Proportion Time Blocked																
Percent Grade (%)														()	
Right Turn Channelized														N	lo	
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30
Delay, Queue Length, and	l Leve	l of Se	ervice													
Flow Rate, v (veh/h)		16												154		82
Capacity, c (veh/h)		1451												784		956
v/c Ratio		0.01												0.20		0.09
95% Queue Length, Q ₉₅ (veh)		0.0												0.7		0.3
Control Delay (s/veh)		7.5												10.7		9.1
Level of Service (LOS)	А													В		А
Approach Delay (s/veh)	1.6											10.2				
Approach LOS										В						

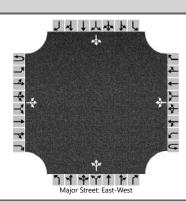
HCS7 Signalized Intersection Results Summary Intersection Information 144444 **General Information** Agency FTG Duration, h 0.25 FTG 12/21/2014 Analyst Analysis Date Area Type Other PHF 0.97 Jurisdiction Thompson's Station, TN Time Period PM Peak Hour **Urban Street** Columbia Pike Analysis Year 2018 (Existing) **Analysis Period** 1> 7:00 Columbia Pk and Thom... File Name Intersection 8 expm.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R R 36 30 Demand (v), veh/h 14 11 53 70 27 214 52 11 255 5 **Signal Information** JI., Cycle, s 60.0 Reference Phase 2 PATE TO Offset, s 0 Reference Point End Green 1.0 1.3 2.9 5.5 1.2 24.1 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 4.0 4.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 0.0 2.0 2.0 0.0 2.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 4 3 8 2 6 7 5 1 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 7.3 11.5 10.2 14.4 8.2 31.3 7.0 30.1 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 3.2 3.1 3.2 3.1 0.0 3.1 0.0 Queue Clearance Time (g_s), s 2.4 4.3 4.1 4.1 2.5 2.2 Green Extension Time (g_e), s 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 Phase Call Probability 0.21 0.92 0.70 0.97 0.37 0.17 0.00 0.07 1.00 0.00 0.00 0.00 Max Out Probability **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 7 4 14 3 8 18 5 2 12 1 6 16 Adjusted Flow Rate (v), veh/h 14 66 72 68 28 274 11 268 1810 1654 1810 1756 1810 1835 1810 1893 Adjusted Saturation Flow Rate (s), veh/h/ln 0.4 2.3 2.1 2.1 0.5 0.2 5.9 Queue Service Time (g_s), s 6.1 Cycle Queue Clearance Time (q c), s 0.4 2.3 2.1 2.1 0.5 6.1 0.2 5.9 0.11 Green Ratio (g/C) 0.09 0.16 0.14 0.44 0.42 0.42 0.40 Capacity (c), veh/h 256 151 320 246 529 773 472 760 Volume-to-Capacity Ratio (X) 0.056 0.436 0.226 0.276 0.053 0.355 0.024 0.353 Back of Queue (Q), ft/ln (95 th percentile) 7.7 38.7 37.2 36.4 8 107.3 3.4 108.7 Back of Queue (Q), veh/ln (95 th percentile) 0.3 1.5 1.5 1.5 0.3 4.3 0.1 4.3 Queue Storage Ratio (RQ) (95 th percentile) 0.09 0.28 0.37 0.23 0.05 0.21 0.02 0.22 22.0 10.6 Uniform Delay (d 1), s/veh 23.8 25.8 23.1 9.9 11.8 12.5 Incremental Delay (d 2), s/veh 0.0 0.7 0.1 0.2 0.0 1.3 0.0 1.3 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 23.8 26.5 22.1 23.3 9.9 13.1 10.6 13.8 Level of Service (LOS) С С С С Α В В В 26.0 С 22.7 С 12.8 13.7 Approach Delay, s/veh / LOS В В Intersection Delay, s/veh / LOS 16.2 В **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.93 В 1.92 В 1.89 1.89 В В Bicycle LOS Score / LOS 0.62 Α 0.72 Α 0.99 Α 0.95 Α

BACKGROUND WEEKDAY CONDITIONS


HCS7 Signalized Intersection Results Summary Intersection Information 7474777 **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date 12/21/2014 Area Type Other AM Peak Hour PHF 0.94 Jurisdiction Thompson's Station, TN Time Period **Urban Street** Columbia Pike Analysis Year 2020 (Back) **Analysis Period** 1> 7:00 Intersection Columbia Pk and Critz L... File Name 1 bgam.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R R L R Demand (v), veh/h 62 947 1729 22 249 1137 **Signal Information** Cycle, s 90.0 Reference Phase 2 Offset, s 0 Reference Point End Green 11.3 37.7 0.0 23.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 2.0 2.0 0.0 On Red 0.0 0.0 **Timer Results EBL** EBT **WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 8 2 1 6 Case Number 9.0 8.3 1.0 4.0 Phase Duration, s 29.0 43.7 17.3 61.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.4 0.0 3.1 0.0 Queue Clearance Time (g_s), s 25.0 10.8 Green Extension Time (g_e), s 0.0 0.0 0.4 0.0 Phase Call Probability 1.00 1.00 1.00 0.00 Max Out Probability SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 3 18 2 12 1 6 Adjusted Flow Rate (v), veh/h 66 1007 932 931 265 1210 1810 1900 1891 1810 1809 Adjusted Saturation Flow Rate (s), veh/h/ln 1610 2.5 23.0 64.7 37.7 8.8 17.6 Queue Service Time (g_s), s Cycle Queue Clearance Time (g_c), s 2.5 23.0 64.7 37.7 8.8 17.6 0.42 Green Ratio (g/C) 0.26 0.38 0.42 0.57 0.61 Capacity (c), veh/h 462 613 797 793 306 2211 Volume-to-Capacity Ratio (X) 0.143 1.644 1.169 1.174 0.865 0.547 Back of Queue (Q), ft/ln (95 th percentile) 48 2384. 1259. 1270. 241.3 260.3 4 7 3 Back of Queue (Q), veh/ln (95 th percentile) 1.9 95.4 50.4 50.8 9.7 10.4 Queue Storage Ratio (RQ) (95 th percentile) 0.48 14.90 2.52 2.54 1.51 0.52 Uniform Delay (d 1), s/veh 25.9 26.1 27.9 26.1 25.2 10.2 Incremental Delay (d 2), s/veh 0.1 297.0 89.5 91.3 2.9 1.0 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 25.9 324.9 11.2 Control Delay (d), s/veh 115.6 117.4 28.1 Level of Service (LOS) С F F С В Approach Delay, s/veh / LOS 0.0 306.5 F 116.5 F 14.2 В Intersection Delay, s/veh / LOS 128.6 **Multimodal Results** FB WB NB SB Pedestrian LOS Score / LOS 2.15 В 2.32 В 1.91 В 0.68 Α Bicycle LOS Score / LOS 2.02 В 1.70

HCS7 Signalized Intersection Results Summary Intersection Information 7年7年17年7 **General Information** Agency FTG Duration, h 0.25 FTG 12/21/2014 Analyst Analysis Date Area Type Other PM Peak Hour PHF 0.98 Jurisdiction Thompson's Station, TN Time Period **Urban Street** Columbia Pike Analysis Year 2020 (Back) **Analysis Period** 1> 7:00 Columbia Pk and Critz L... File Name Intersection 1 bgpm.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R R 997 Demand (v), veh/h 36 468 1791 102 2107 **Signal Information** 160 Cycle, s 90.0 Reference Phase 2 Offset, s 0 Reference Point End Green 13.0 47.0 0.0 12.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 2.0 2.0 0.0 On Red 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 8 2 1 6 Case Number 9.0 8.3 1.0 4.0 Phase Duration, s 18.0 53.0 19.0 72.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.4 0.0 3.1 0.0 Queue Clearance Time (g_s), s 14.0 15.0 Green Extension Time (g_e), s 0.0 0.0 0.0 0.0 Phase Call Probability 1.00 1.00 1.00 1.00 Max Out Probability SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 3 18 2 12 1 6 Adjusted Flow Rate (v), veh/h 37 478 966 966 1017 2150 1810 1610 1900 1864 1810 1809 Adjusted Saturation Flow Rate (s), veh/h/ln 1.6 12.0 45.3 46.2 13.0 35.2 Queue Service Time (g_s), s Cycle Queue Clearance Time (g_c), s 1.6 12.0 45.3 46.2 13.0 35.2 0.28 0.52 Green Ratio (g/C) 0.13 0.52 0.69 0.73 447 Capacity (c), veh/h 241 992 973 343 2653 Volume-to-Capacity Ratio (X) 0.152 1.068 0.974 0.992 2.963 0.810 Back of Queue (Q), ft/ln (95 th percentile) 31.6 610.2 790.4 829.1 3375.8 393.5 Back of Queue (Q), veh/ln (95 th percentile) 1.3 24.4 31.6 33.2 135.0 15.7 Queue Storage Ratio (RQ) (95 th percentile) 0.32 3.81 1.58 1.66 21.10 0.79 32.5 20.9 Uniform Delay (d 1), s/veh 34.5 21.3 30.3 7.9 Incremental Delay (d 2), s/veh 0.1 61.8 22.9 27.0 891.0 2.8 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 34.6 94.3 43.8 48.3 921.2 10.7 Level of Service (LOS) С F D D В 0.0 F 46.0 D 303.2 Approach Delay, s/veh / LOS 90.0 Intersection Delay, s/veh / LOS 195.2 **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.15 В 2.32 В 1.89 0.65 В Α Bicycle LOS Score / LOS 2.08 В 3.10

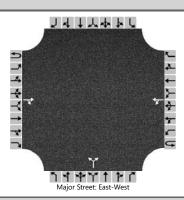
HCS7 Signalized Intersection Results Summary Intersection Information 747477 **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date 12/21/2014 Area Type Other PHF 0.94 Jurisdiction Thompson's Station, TN Time Period AM Peak Hour **Urban Street** Columbia Pike Analysis Year 2020 (Back) **Analysis Period** 1> 7:00 Intersection Columbia Pk and Critz L... File Name 1 bgam imp.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 22 Demand (v), veh/h 62 947 1729 249 1137 **Signal Information** 16 Cycle, s 100.0 Reference Phase 2 Offset, s 0 Reference Point End Green 12.8 52.2 0.0 17.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 2.0 0.0 On Red 2.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 8 2 1 6 Case Number 9.0 8.3 1.0 4.0 Phase Duration, s 23.0 58.2 18.8 77.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.4 0.0 3.1 0.0 Queue Clearance Time (g_s), s 19.0 12.3 Green Extension Time (g_e), s 0.0 0.0 0.5 0.0 Phase Call Probability 1.00 1.00 1.00 0.00 Max Out Probability SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 3 18 2 12 1 6 Adjusted Flow Rate (v), veh/h 66 1007 932 931 265 1210 1810 1425 1900 1891 1810 1809 Adjusted Saturation Flow Rate (s), veh/h/ln 3.1 17.0 86.9 46.3 10.3 14.6 Queue Service Time (g_s), s 46.3 Cycle Queue Clearance Time (g_c), s 3.1 17.0 86.9 10.3 14.6 0.71 Green Ratio (g/C) 0.17 0.30 0.52 0.52 0.67 988 Capacity (c), veh/h 308 849 992 303 2568 Volume-to-Capacity Ratio (X) 0.214 1.187 0.939 0.943 0.873 0.471 Back of Queue (Q), ft/ln (95 th percentile) 61.9 781.2 781.1 786.1 266.1 206.6 Back of Queue (Q), veh/ln (95 th percentile) 2.5 31.2 31.2 31.4 10.6 8.3 Queue Storage Ratio (RQ) (95 th percentile) 0.62 4.88 1.56 1.57 1.66 0.41 22.4 22.5 32.2 Uniform Delay (d 1), s/veh 35.7 35.1 6.3 Incremental Delay (d 2), s/veh 0.1 95.8 17.2 17.8 3.1 0.6 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 35.9 131.0 39.6 40.2 35.3 6.9 Level of Service (LOS) D F D D D Α 0.0 125.1 F 39.9 D 12.0 Approach Delay, s/veh / LOS В Intersection Delay, s/veh / LOS 51.3 D **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.15 В 2.32 В 2.09 0.66 В Α Bicycle LOS Score / LOS 2.02 В 1.70


HCS7 Signalized Intersection Results Summary Intersection Information 7年7年17年7 **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date 12/21/2014 Area Type Other PM Peak Hour PHF 0.98 Jurisdiction Thompson's Station, TN Time Period **Urban Street** Columbia Pike Analysis Year 2020 (Back) **Analysis Period** 1> 7:00 Intersection Columbia Pk and Critz L... File Name 1 bgpm imp.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R R 997 Demand (v), veh/h 36 468 1791 102 2107 **Signal Information** 160 Cycle, s 90.0 Reference Phase 2 Offset, s 0 Reference Point End Green 22.2 36.0 0.0 13.8 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 2.0 0.0 On Red 2.0 0.0 0.0 **Timer Results EBL** EBT **WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 8 2 1 6 Case Number 9.0 8.3 1.0 4.0 Phase Duration, s 19.8 42.0 28.2 70.2 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.4 0.0 3.1 0.0 Queue Clearance Time (g_s), s 12.9 24.1 Green Extension Time (g_e), s 0.9 0.0 0.0 0.0 Phase Call Probability 1.00 1.00 1.00 Max Out Probability 0.11 SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 3 18 2 12 1 6 Adjusted Flow Rate (v), veh/h 37 478 966 966 1017 2150 1810 1425 1900 1864 1810 Adjusted Saturation Flow Rate (s), veh/h/ln 1809 1.6 10.9 56.9 36.0 22.1 37.8 Queue Service Time (g_s), s Cycle Queue Clearance Time (g c), s 1.6 10.9 56.9 36.0 22.1 37.8 0.40 Green Ratio (g/C) 0.15 0.40 0.40 0.67 0.71 Capacity (c), veh/h 278 1139 761 746 525 2580 Volume-to-Capacity Ratio (X) 0.419 1.270 1.294 1.937 0.833 0.132 Back of Queue (Q), ft/ln (95 th percentile) 30.7 154.2 1564. 1624. 2845.8 442.3 9 3 Back of Queue (Q), veh/ln (95 th percentile) 1.2 6.2 62.6 65.0 113.8 17.7 Queue Storage Ratio (RQ) (95 th percentile) 0.31 0.96 3.13 3.25 17.79 0.88 Uniform Delay (d 1), s/veh 19.5 27.0 32.9 27.0 27.7 9.1 Incremental Delay (d 2), s/veh 0.1 0.1 131.8 142.1 428.7 3.3 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 33.0 19.6 158.8 Control Delay (d), s/veh 169.1 456.4 12.5 Level of Service (LOS) С В F В Approach Delay, s/veh / LOS 0.0 20.5 С 163.9 F 155.1 Intersection Delay, s/veh / LOS 145.8 **Multimodal Results** FB WB NB SB Pedestrian LOS Score / LOS 2.15 2.10 В 2.32 В В 0.65 Α Bicycle LOS Score / LOS 2.08 В 3.10

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Critz and Clayton
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Critz Lane
Analysis Year	2020	North/South Street	Clayton Arnold/Paddock
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.86
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Back)		

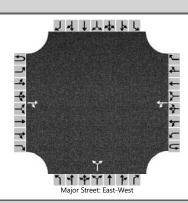
Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		4	85	97		90	159	19		436	19	29		4	32	31
Percent Heavy Vehicles (%)		0				0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized																
Median Type Storage				Undi	ivided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.10				4.10				7.10	6.50	6.20		7.10	6.50	6.20
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		5				105					563				78	
Capacity, c (veh/h)		1376				1371					354				497	
v/c Ratio		0.00				0.08					1.59				0.16	
95% Queue Length, Q ₉₅ (veh)		0.0				0.2					32.6				0.6	
Control Delay (s/veh)		7.6				7.8					305.6				13.6	
Level of Service (LOS)		А				Α					F				В	
Approach Delay (s/veh)		0.2 3.1					.1		305.6					13.6		
Approach LOS									F B							

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Critz and Clayton
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Critz Lane
Analysis Year	2020	North/South Street	Clayton Arnold/Paddock
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Back)		



Vehicle Volumes and Ad	justme	nts																
Approach		Eastb	ound			West	oound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0		
Configuration			LTR				LTR				LTR				LTR			
Volume (veh/h)		7	64	444		101	152	30		98	21	25		5	28	15		
Percent Heavy Vehicles (%)		0				0				0	0	0		0	0	0		
Proportion Time Blocked																		
Percent Grade (%)										()		0					
Right Turn Channelized																		
Median Type Storage				Undi	vided													
Critical and Follow-up H	eadwa	ys																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2		
Critical Headway (sec)		4.10				4.10				7.10	6.50	6.20		7.10	6.50	6.20		
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3		
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30		
Delay, Queue Length, an	d Leve	l of S	ervice	1														
Flow Rate, v (veh/h)		8				110					157				52			
Capacity, c (veh/h)		1387				1028					301				297			
v/c Ratio		0.01				0.11					0.52				0.18			
95% Queue Length, Q ₉₅ (veh)		0.0				0.4					2.8				0.6			
Control Delay (s/veh)		7.6				8.9					29.2				19.7			
Level of Service (LOS)	A					А			D						С			
Approach Delay (s/veh)	0.2 3.9						29.2 19.7											
Approach LOS							[)		С								

				HCS ⁻	7 Roı	ında	bo	uts F	lepc	rt									
General Information						П	Site	Info	mati	ion	1								
Analyst	FTG						Inte	ersection				Critz an	d Clayto	n Arno	old				
Agency or Co.	FTG						E/W	√ Street I	Name			Critz La	ne						
Date Performed	Sept 2	2018					N/S	Street N	lame			Clayton	Arnold I	Road					
Analysis Year	2020						Ana	alysis Tim	e Perio	d (h	nrs)	0.25							
Time Analyzed	AM Pe	eak Hou	r				Peal	k Hour F	actor			0.86							
Project Description	10886	(Back)					Juris	sdiction				Thomps	son's Sta	tion, T	ſΝ				
Volume Adjustments	and S	Site C	haract	teristic	s														
Approach		E	В			WE	3				NI	В				SB			
Movement	U	L	Т	R	U	L	Т	R	U		L	Т	R	U	L	Т	R		
Number of Lanes (N)	0	0	1	0	0	0	1	0	0		0	1	0	0	0	1	0		
Lane Assignment			Lī	R				LTR				LTR					LTR		
Volume (V), veh/h	0	4	85	97	0	90	159	19	0		436	19	29	0	4	32	31		
Percent Heavy Vehicles, %	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0		
Flow Rate (VPCE), pc/h	0	5	99	113	0	105	185	22	0		507	22	34	0	5	37	36		
Right-Turn Bypass		No	ne			Nor	ne				No	ne				None			
Conflicting Lanes			1			1					1					1			
Pedestrians Crossing, p/h		()			0					0					0			
Critical and Follow-Up Headway Adjustment																			
Approach		EB						WB		П		NB				SB			
Lane			Left	Right	Bypass	Lef	t	Right	Вурая	ss	Left	Right	Bypass	L	_eft	Right	Bypass		
Critical Headway (s)				4.9763				4.9763				4.9763				4.9763			
Follow-Up Headway (s)				2.6087			T	2.6087				2.6087				2.6087			
Flow Computations,	Capac	ity ar	ıd v/c	Ratios															
Approach				EB				WB		П		NB			SB				
Lane			Left	Right	Bypass	Lef	t	Right Bypass		Left	Left Right		L	_eft	Right	Bypass			
Entry Flow (v _e), pc/h		\Box		217.00			\Box	312.00		T		563.00				78.00			
Entry Volume veh/h				217.00				312.00				563.00				78.00			
Circulating Flow (v _c), pc/h				147				534				109				797			
Exiting Flow (vex), pc/h				138				728				49				255			
Capacity (C _{pce}), pc/h				1187.85				800.44				1234.79				612.11			
Capacity (c), veh/h				1187.85				800.44		П		1234.79				612.11			
v/c Ratio (x)				0.18				0.39				0.46				0.13			
Delay and Level of Se	ervice																		
Approach				EB		Π		WB		П		NB		Т		SB			
Lane			Left Right Bypass				t	Right	Вура	ss	Left	Right	Bypass	L	_eft	Right	Bypass		
Lane Control Delay (d), s/veh			4.6					9.3				7.6				7.4			
Lane LOS		A						Α				А				А			
95% Queue, veh		0.7						1.9				2.4				0.4			
Approach Delay, s/veh		4.6						9.3		7.6 7.4									
Approach LOS		A						Α				А				Α			
Intersection Delay, s/veh LOS	5	7.5											A Congrated: 9/26/2018 3:02:32 PM						

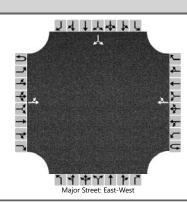

HCS7 Roundabouts Report																		
General Information							Site	e Info	rmat	ior	า							
Analyst	FTG						Inte	ersection				Critz an	d Clayto	n Arn	old			
Agency or Co.	FTG						E/V	V Street I	Name			Critz La	ne					
Date Performed	Sept 2	2018					N/S	S Street N	lame			Clayton	Arnold	Road				
Analysis Year	2020						Ana	alysis Tim	ne Perio	od (l	hrs)	0.25						
Time Analyzed	PM Pe	eak Houi					Pea	ak Hour F	actor			0.92						
Project Description	10886	(Back)					Juri	isdiction				Thomps	son's Sta	tion, 1	TN			
Volume Adjustments	and S	Site C	haract	eristic	s													
Approach		E	В			W	/B		Т		N	В				SB		
Movement	U	L	Т	R	U	L	Т	R	ι	J	L	Т	R	U	L	Т	R	
Number of Lanes (N)	0	0	1	0	0	0	1	0	()	0	1	0	0	0	1	0	
Lane Assignment			LT	R			LTR				LTR					LTR		
Volume (V), veh/h	0	7	64	444	0	101	152	2 30	()	98	21	25	0	5	28	15	
Percent Heavy Vehicles, %	0	0	0	0	0	0	0	0	()	0	0	0	0	0	0	0	
Flow Rate (VPCE), pc/h	0	8	70	483	0	110	165	33	()	107	23	27	0	5	30	16	
Right-Turn Bypass		No	ne			No	ne				No	ne				None		
Conflicting Lanes			1			1	1				1					1		
Pedestrians Crossing, p/h		()			C)				0	1				0		
Critical and Follow-U	р Неа	Headway Adjustment																
Approach		EB						WB				NB		Т		SB		
Lane			Left	Right	Bypass	s Le	ft	Right	Вура	ss	Left	Right	Bypass	5 I	Left	Right	Bypass	
Critical Headway (s)				4.9763				4.9763				4.9763				4.9763		
Follow-Up Headway (s)				2.6087				2.6087				2.6087				2.6087		
Flow Computations,	Capac	ity ar	ıd v/c	Ratios											2.0007			
Approach				EB		Т		WB			NB		1B			SB		
Lane			Left	Right	Bypass	s Le				ss	Left	Right	Bypass	5 I	Left	Right	Bypass	
Entry Flow (v _e), pc/h				561.00				308.00				157.00				51.00		
Entry Volume veh/h				561.00				308.00				157.00				51.00		
Circulating Flow (v₂), pc/h				145				138				83		Т		382		
Exiting Flow (vex), pc/h				102				288				64		Т		623		
Capacity (C _{pce}), pc/h				1190.27				1198.80				1267.98		Т		934.68		
Capacity (c), veh/h				1190.27				1198.80				1267.98		Т		934.68		
v/c Ratio (x)				0.47				0.26				0.12				0.05		
Delay and Level of Se																		
Approach		EB						WB				NB		Т		SB		
Lane							ft	Right	Вура	ss	Left	Right	Bypass	5 l	Left	Right	Bypass	
Lane Control Delay (d), s/veh			8.0					5.3				3.9				4.3		
Lane LOS		A						Α				А				Α		
95% Queue, veh		2.6						1.0				0.4				0.2		
Approach Delay, s/veh		8.0					5.3		3.9 4.3									
Approach LOS		A						Α		A A								
Intersection Delay, s/veh LOS	5	6.5 All Rights Reserved HCSTM					6.5 A											

	HCS7 Two-Way Stoր	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Critz and Pantall
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Critz Lane
Analysis Year	2020	North/South Street	Pantall Road
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.87
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Back)		

Vehicle Volumes and Adju	ıstme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			95	77		119	157			74		197				
Percent Heavy Vehicles (%)						0				0		0				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.10				6.40		6.20				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.20				3.50		3.30				
Delay, Queue Length, and	Leve	l of S	ervice													
Flow Rate, v (veh/h)						137					311					
Capacity, c (veh/h)						1387					679					
v/c Ratio						0.10					0.46					
95% Queue Length, Q ₉₅ (veh)					Ì	0.3			Ì		2.4					
Control Delay (s/veh)						7.9					14.7					
Level of Service (LOS)						А					В					
Approach Delay (s/veh)						3	.9			14	1.7					
Approach LOS								В								

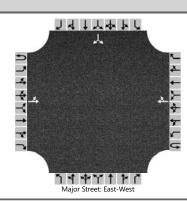
	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Critz and Pantall
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Critz Lane
Analysis Year	2020	North/South Street	Pantall Road
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Back)		

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			84	115		532	221			100		175				
Percent Heavy Vehicles (%)						0				0		0				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up Ho	eadwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.10				6.40		6.20				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.20				3.50		3.30				
Delay, Queue Length, and	d Leve	l of S	ervice													
Flow Rate, v (veh/h)						560					289					
Capacity, c (veh/h)						1373					174					
v/c Ratio						0.41					1.66					
95% Queue Length, Q ₉₅ (veh)						2.0					19.9					
Control Delay (s/veh)						9.4					369.9					
Level of Service (LOS)	A									F						
Approach Delay (s/veh)						7	.9		369.9							
Approach LOS									F							


HCS7 Roundabouts Report																			
General Information							Site	e Info	rmat	tior	1								
Analyst	FTG						Inte	ersection				Critz an	d Pantal						
Agency or Co.	FTG						E/V	V Street I	Name			Critz La	ne						
Date Performed	Sept 2	2018					N/S Street Name					Pantall Lane							
Analysis Year	2020						Analysis Time Period (hrs)					0.25							
Time Analyzed	AM Pe	eak Hou	r				Peak Hour Factor					0.88							
Project Description	10886	(Back)					Juri	isdiction				Thompson's Station, TN							
Volume Adjustments	olume Adjustments and Site Characteristics																		
Approach		E	/B		Т		N	В				SB							
Movement	U	L	Т	R	U	L	Т	R	ι	U	L	Т	R	U	L	Т	R		
Number of Lanes (N)	0 0 1 0				0	0	1	0	(0	0	1	0	0	0	0	0		
Lane Assignment			Т	R				LT				LR							
Volume (V), veh/h	0		95	77	0	119	157	7	(0	74		197						
Percent Heavy Vehicles, %	0		0	0	0	0	0		(0	0		0						
Flow Rate (VPCE), pc/h	0		108	88	0	135	178	3	(0	84		224						
Right-Turn Bypass		No	ne			No	ne	_			No	ne				None			
Conflicting Lanes	1										1								
Pedestrians Crossing, p/h	0						0				0								
Critical and Follow-Up Headway Adjustment																			
Approach EB								WB				NB		Т		SB			
Lane				Right	Bypas	s Le	eft	Right	Вура	ass	Left	Right	Bypass	5 L	_eft	Right	Bypass		
Critical Headway (s)				4.9763				4.9763				4.9763							
Follow-Up Headway (s)				2.6087				2.6087				2.6087							
Flow Computations,	Capac	ity ar	ıd v/c	Ratios															
Approach		\neg		EB		Т		WB					Т		SB				
Lane			Left	Right	Bypas	s Le	eft	Right	Вура	ass	Left	Left Right		Right Bypa		5 L	_eft	Right	Bypass
Entry Flow (v _e), pc/h				196.00				313.00				308.00							
Entry Volume veh/h				196.00				313.00				308.00							
Circulating Flow (v₀), pc/h		\Box		135		1		84				108				397			
Exiting Flow (vex), pc/h				332				262				0				223			
Capacity (C _{pce}), pc/h				1202.48				1266.68				1236.05							
Capacity (c), veh/h				1202.48				1266.68				1236.05							
v/c Ratio (x)				0.16				0.25				0.25							
Delay and Level of Se	ervice																		
Approach				EB				WB				NB		Τ		SB			
Lane		Left Right				s Le	eft	Right	Вура	ass	Left	Right	Bypass	i L	.eft	Right	Bypass		
Lane Control Delay (d), s/veh	4.4			4.4				5.0				5.1							
Lane LOS	A							Α				А							
95% Queue, veh	5% Queue, veh 0.6							1.0				1.0							
Approach Delay, s/veh		4.4					5.0					5.1							
Approach LOS				Α				Α			А								
Intersection Delay, s/veh LOS 4.9						4.9	A												

HCS7 Roundabouts Report																			
General Information							Site Information Intersection Critz and Pantall												
Analyst	FTG						Inte	ersection				Critz an	d Panta	ı					
Agency or Co.	FTG						E/V	N Street I	Name		Critz Lane								
Date Performed	Sept 2	2018					N/S Street Name					Pantall Lane							
Analysis Year	2020						An	alysis Tin	ne Perio	od (ł	nrs)	0.25							
Time Analyzed	PM Pe	eak Houi					Peak Hour Factor					0.92							
Project Description	10886	(Back)					Jur	isdiction				Thomps	son's Sta	ition,	TN				
Volume Adjustments	olume Adjustments and Site Characteristics																		
Approach	EB V								Т		N	3				SB			
Movement	U	L	Т	R	U	L	Т	R	ι	J	L	Т	R	U	L	Т	R		
Number of Lanes (N)	0	0 0 1 0				0	1	0	()	0	1	0	0	0	0	0		
Lane Assignment			Т	R				LT				LR							
Volume (V), veh/h	0		84	115	0	532	221	1	()	100		175				\top		
Percent Heavy Vehicles, %	0		0	0	0	0	0		()	0		0						
Flow Rate (VPCE), pc/h	0		91	125	0	578	240)	()	109		190						
Right-Turn Bypass		No	ne			No	one				No	ne				None			
Conflicting Lanes	1										1								
Pedestrians Crossing, p/h	0						0				0								
Critical and Follow-U	р Неа	adway	, Adju	stmen	t														
Approach EB								WB		П		NB		Т		SB			
Lane			Left	Right	ht Bypass Le		eft	Right	Вура	ss	Left	Right	Bypas	s	Left	Right	Bypass		
Critical Headway (s)				4.9763				4.9763				4.9763							
Follow-Up Headway (s)				2.6087				2.6087				2.6087							
Flow Computations,	Capac	ity ar	ıd v/c	Ratios	;														
Approach		\neg		EB		\top		WB		П	NB			Т		SB			
Lane			Left	Right	Bypas	s Le	eft	Right	Вура	ss	Left Right		Bypas	s	Left	Right	Bypass		
Entry Flow (v _e), pc/h				216.00				818.00				299.00							
Entry Volume veh/h				216.00				818.00				299.00	299.00						
Circulating Flow (v₂), pc/h		\Box		578		\top		109				91				927			
Exiting Flow (vex), pc/h				281				349				0				703			
Capacity (C _{pce}), pc/h				765.31				1234.79				1257.67		Т					
Capacity (c), veh/h				765.31				1234.79				1257.67							
v/c Ratio (x)				0.28				0.66				0.24							
Delay and Level of Se	ervice																		
Approach		EB						WB				NB		Т		SB			
Lane		Left Right			Bypas	s Le	eft	Right	Вура	ss	Left	Right	Bypas	s	Left	Right	Bypass		
Lane Control Delay (d), s/veh	8.0			8.0				11.7				4.9							
Lane LOS	A							В				А							
95% Queue, veh	eue, veh							5.3				0.9							
Approach Delay, s/veh		8.0					11.7					4.9							
Approach LOS	Approach LOS A							В		A									
Intersection Delay, s/veh LOS 9.6						9.6					A								

HCS7 Sig	nalize	d Inte	ersect	ion R	lesi	ults	Sun	nmar	У					
General Information						Inte	react	ion Inf	ormatio	n .		4144	չ. <u>Լ</u>	
Agency FTG							ation,		0.25)II		11		
Analyst FTG	Analys	ic Data	12/21/	2014					Other		_3 _5		₹ .	
Jurisdiction Thompson's Station, TN	Time F			ak Hou	r	Area Type Other PHF 0.94					— 	w∤̃∈	2-	
Urban Street Columbia Pike					<u> </u>	Analysis Period 1> 7:00					- 3			
								eriou	- F					
	File iva	ime	u_bga	m.xus							_	া † বিশ্বপ	ta C	
Project Description 10886												3 17 11	r I	
Demand Information	Т	EB		T	V	/B		Т	NB		SB			
Approach Movement		Т	R	L	_	т	R	L	Т	R	L	Т	R	
Demand (v), veh/h	353		16		\dagger			17	1462			200	221	
Signal Information			1	2										
Cycle, s 150.0 Reference Phase 2	1	251	R.	E.							4].	~	
Offset, s 0 Reference Point End	Green		102.0	26.0	0.	<u> </u>	0.0	0.0		1	2	3	Y 4	
Uncoordinated No Simult. Gap E/W On	Yellow		4.0	4.0	0.		0.0	0.0	_		1 ⊦	┙╭╴│		
Force Mode Fixed Simult. Gap N/S On	Red	0.0	2.0	2.0	0.		0.0	0.0	コ	5	6	7	8	
Timer Results	EBL		EBT	WBI	L	W	ВТ	NBI	-	NBT	SBI	-	SBT	
Assigned Phase			4					5		2			6	
Case Number			9.0					1.0		4.0			7.3	
Phase Duration, s			32.0					10.0) /	118.0		-	108.0	
Change Period, (Y+Rc), s			6.0					4.0		6.0			6.0	
Max Allow Headway (MAH), s			3.1					3.1		0.0			0.0	
Queue Clearance Time (g s), s			28.0					2.4						
Green Extension Time (g e), s		\neg	0.0		\neg			0.0		0.0			0.0	
Phase Call Probability			1.00					1.00)					
Max Out Probability			1.00					0.36	5					
Movement Group Results	<u> </u>	EB			WI	В			NB		_	SB		
Approach Movement	L	T	R	L	Т	\perp	R	L	T	R	L	Т	R	
Assigned Movement	7		14			\perp	_	5	2			6	16	
Adjusted Flow Rate (v), veh/h	376		17			_		18	1555			213	235	
Adjusted Saturation Flow Rate (s), veh/h/ln	1810		1610			\perp	_	1810	1900			1900	1610	
Queue Service Time (g s), s	26.0		1.3					0.4	112.0			6.1	3.8	
Cycle Queue Clearance Time ($g\ c$), s	26.0		1.3			_		0.4	112.0			6.1	3.8	
Green Ratio (g/C)	0.17		0.21					0.73	0.75			0.68	0.85	
Capacity (c), veh/h	314		344					880	1419			1292	1374	
Volume-to-Capacity Ratio (X)	1.197		0.050					0.021	1.096			0.165	0.171	
Back of Queue (Q), ft/ln (95 th percentile)	808.6		23.1					6.5	2077			114.5	41.7	
Back of Queue (Q), veh/ln (95 th percentile)	32.3		0.9					0.3	83.1			4.6	1.7	
Queue Storage Ratio (RQ) (95 th percentile)	8.98		0.16					0.04	4.15			0.23	0.08	
Uniform Delay (d 1), s/veh	62.0		46.9					5.6	19.0			8.6	1.9	
Incremental Delay (d 2), s/veh	115.5		0.0					0.0	54.8			0.3	0.3	
Initial Queue Delay (d 3), s/veh	0.0		0.0					0.0	0.0			0.0	0.0	
Control Delay (d), s/veh	177.5		46.9					5.6	73.8			8.9	2.2	
Level of Service (LOS)	F		D					Α	F			Α	Α	
Approach Delay, s/veh / LOS	171.9	9	F	0.0				73.0)	Е	5.4		Α	
Intersection Delay, s/veh / LOS			76	.5		E					Е			
												SB		
Multimodal Results		EB			WI				NB					
Pedestrian LOS Score / LOS	1.97		В	1.97			3	0.66	_	Α	1.88	_	В	
Bicycle LOS Score / LOS			F					3.08	3	С	1.23	3	Α	


HCS7 Signalized Intersection Results Summary Intersection Information يطلطله **General Information** Agency FTG Duration, h 0.25 FTG 12/21/2014 Analyst Analysis Date Area Type Other PM Peak Hour PHF 0.99 Jurisdiction Thompson's Station, TN Time Period **Urban Street** Columbia Pike Analysis Year 2020 (Back) **Analysis Period** 1> 7:00 4_bgpm.xus Intersection Lewisburg and Critz Lane File Name **Project Description** 10886 WB **Demand Information** EB NB SB Approach Movement R L R L R R 34 Demand (v), veh/h 228 14 367 1044 680 **Signal Information** Л Cycle, s 150.0 Reference Phase 2 Offset, s 0 Reference Point End Green 6.0 27.0 0.0 0.0 0.0 101.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 On Red 0.0 2.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 4 2 6 5 Case Number 9.0 1.0 4.0 7.3 Phase Duration, s 33.0 10.0 117.0 107.0 Change Period, (Y+Rc), s 6.0 4.0 6.0 6.0 Max Allow Headway (MAH), s 3.2 3.1 0.0 0.0 Queue Clearance Time (g_s), s 19.9 2.3 Green Extension Time (g_e), s 0.3 0.0 0.0 0.0 Phase Call Probability 1.00 1.00 0.03 0.28 Max Out Probability WB **Movement Group Results** EΒ NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 7 14 5 2 6 16 Adjusted Flow Rate (v), veh/h 230 34 14 371 1055 687 1810 1610 1810 1900 1900 1610 Adjusted Saturation Flow Rate (s), veh/h/ln 17.9 2.5 0.3 16.4 Queue Service Time (g_s), s 9.5 61.1 Cycle Queue Clearance Time (g c), s 17.9 2.5 0.3 9.5 61.1 16.4 0.22 0.74 Green Ratio (g/C) 0.18 0.73 0.67 0.85 Capacity (c), veh/h 326 354 265 1406 1279 1374 Volume-to-Capacity Ratio (X) 0.707 0.097 0.053 0.264 0.824 0.500 Back of Queue (Q), ft/ln (95 th percentile) 339.3 46.6 9.5 167.9 889.4 183.8 Back of Queue (Q), veh/ln (95 th percentile) 13.6 1.9 0.4 6.7 35.6 7.4 Queue Storage Ratio (RQ) (95 th percentile) 3.77 0.33 0.06 0.34 1.78 0.37 57.8 46.6 18.0 Uniform Delay (d 1), s/veh 19.3 6.3 2.8 Incremental Delay (d 2), s/veh 5.9 0.0 0.0 0.5 6.1 1.3 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 63.7 46.7 19.3 6.8 24.1 4.1 Level of Service (LOS) Е D В Α С Α 61.5 Ē 0.0 7.2 16.2 Approach Delay, s/veh / LOS Α В Intersection Delay, s/veh / LOS 19.8 В **Multimodal Results** ΕB WB NB SB Pedestrian LOS Score / LOS 1.97 В 1.97 В 0.66 1.88 Α В Bicycle LOS Score / LOS F 1.12 Α 3.36

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	FTG	Intersection	Thompson's St and Pantall									
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN									
Date Performed	Sept 2018	East/West Street	Thompson's Sta Road									
Analysis Year	2020	North/South Street	Pantall Road									
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.82									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	10886 (Back)											

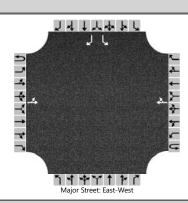
Approach	T	Fasth	ound			Westl	nound			North	hound		Southbound					
Movement	U	L	T	R	U	L	Т	R	U	L	Т	В						
	+								U		·	R	l U	L	-	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0		
Configuration	<u> </u>	LT						TR							LR	<u> </u>		
Volume (veh/h)		240	311				285	65						90		135		
Percent Heavy Vehicles (%)		0												0		0		
Proportion Time Blocked																		
Percent Grade (%)													0					
Right Turn Channelized																		
Median Type Storage				Undi	vided													
Critical and Follow-up Headways																		
Base Critical Headway (sec)		4.1												7.1		6.2		
Critical Headway (sec)		4.10												6.40		6.20		
Base Follow-Up Headway (sec)		2.2												3.5		3.3		
Follow-Up Headway (sec)		2.20												3.50		3.30		
Delay, Queue Length, an	d Leve	l of Se	ervice															
Flow Rate, v (veh/h)	T	293													274			
Capacity, c (veh/h)		1143													225			
v/c Ratio		0.26													1.22			
95% Queue Length, Q ₉₅ (veh)		1.0													13.7			
Control Delay (s/veh)		9.2													176.2			
Level of Service (LOS)		А													F			
Approach Delay (s/veh)		5.7										176.2						
·													F					

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	FTG	Intersection	Thompson's St and Pantall									
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN									
Date Performed	Sept 2018	East/West Street	Thompson's Sta Road									
Analysis Year	2020	North/South Street	Pantall Road									
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.93									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	10886 (Back)											

Vehicle Volumes and Adju	stme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		177	300				352	98						94		559
Percent Heavy Vehicles (%)		0												0		0
Proportion Time Blocked																
Percent Grade (%)													0			
Right Turn Channelized																
Median Type Storage																
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)		190													702	
Capacity, c (veh/h)		1089													461	
v/c Ratio		0.17													1.52	
95% Queue Length, Q ₉₅ (veh)		0.6													37.3	
Control Delay (s/veh)		9.0													269.8	
Level of Service (LOS)		А													F	
Approach Delay (s/veh)	4.5												269.8			
Approach LOS													F			

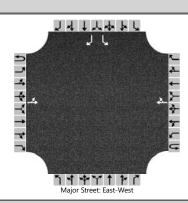
HCS7 Signalized Intersection Results Summary 144444 Intersection Information **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date Jan 17, 2018 Area Type Other PHF 0.82 Jurisdiction Thompson's Station Road Time Period AM Peak Hour **Urban Street** Thompson's Station Road Analysis Year 2020 (Back) **Analysis Period** 1> 7:00 Intersection Thompson's Sta and Pa... File Name 5 bgam sig.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement R L R L R R 311 65 0 Demand (v), veh/h 240 285 90 135 <u>-</u> **Signal Information** Cycle, s 60.0 Reference Phase 2 Offset, s 0 Reference Point End Green 7.7 22.6 11.7 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 2.0 0.0 On Red 2.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 4 Case Number 1.0 4.0 8.3 12.0 Phase Duration, s 13.7 42.3 28.6 17.7 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 0.0 3.3 Queue Clearance Time (g_s), s 7.3 11.4 Green Extension Time (g_e), s 0.4 0.0 0.0 0.4 Phase Call Probability 0.99 0.99 0.00 0.01 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R Т L R **Assigned Movement** 5 2 6 16 7 4 14 Adjusted Flow Rate (v), veh/h 293 379 427 274 1810 1900 1839 1684 Adjusted Saturation Flow Rate (s), veh/h/ln 5.3 11.3 9.4 Queue Service Time (g_s), s 5.9 Cycle Queue Clearance Time (g c), s 5.3 5.9 11.3 9.4 0.38 Green Ratio (g/C) 0.54 0.61 0.19 Capacity (c), veh/h 537 1150 693 328 Volume-to-Capacity Ratio (X) 0.546 0.330 0.616 0.837 Back of Queue (Q), ft/ln (95 th percentile) 73.1 85 210.7 161.3 Back of Queue (Q), veh/ln (95 th percentile) 2.9 3.4 8.4 6.5 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 0.00 9.7 15.2 Uniform Delay (d 1), s/veh 5.8 23.3 Incremental Delay (d 2), s/veh 0.3 8.0 4.1 2.2 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 10.0 6.6 19.2 25.5 Level of Service (LOS) В Α В С 8.1 19.2 В 0.0 25.5 С Approach Delay, s/veh / LOS Α Intersection Delay, s/veh / LOS 15.0 В **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.34 1.67 В 1.71 В 1.94 Α В Bicycle LOS Score / LOS 1.60 В 1.19 Α 0.94 Α

HCS7 Signalized Intersection Results Summary 144444 Intersection Information **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date Jan 17, 2018 Area Type Other PM Peak Hour PHF 0.93 Jurisdiction Thompson's Station Road Time Period **Urban Street** Thompson's Station Road Analysis Year 2020 (Back) **Analysis Period** 1> 7:00 Intersection Thompson's Sta and Pa... File Name 5 bgpm sig.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R R 98 0 Demand (v), veh/h 177 300 352 94 559 <u>- 111</u> **Signal Information** Cycle, s 130.0 Reference Phase 2 Offset, s 0 Reference Point End Green 11.0 43.0 58.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 2.0 0.0 On Red 2.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 4 Case Number 1.0 4.0 8.3 12.0 Phase Duration, s 17.0 66.0 49.0 64.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 0.0 3.3 Queue Clearance Time (g_s), s 10.7 56.1 Green Extension Time (g_e), s 0.3 0.0 0.0 1.9 Phase Call Probability 1.00 1.00 0.00 0.00 Max Out Probability SB **Movement Group Results** EΒ WB NB Approach Movement L Т R L Т R L Т R Т L R **Assigned Movement** 5 2 6 16 7 4 14 Adjusted Flow Rate (v), veh/h 190 323 484 702 1810 1828 1636 Adjusted Saturation Flow Rate (s), veh/h/ln 1900 8.7 14.3 31.3 54.1 Queue Service Time (g_s), s Cycle Queue Clearance Time (g c), s 8.7 14.3 31.3 54.1 0.33 Green Ratio (g/C) 0.43 0.46 0.45 Capacity (c), veh/h 292 877 604 730 Volume-to-Capacity Ratio (X) 0.652 0.368 0.801 0.962 Back of Queue (Q), ft/ln (95 th percentile) 169.9 271.7 553.9 773.3 Back of Queue (Q), veh/ln (95 th percentile) 6.8 10.9 22.2 30.9 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 0.00 39.6 Uniform Delay (d 1), s/veh 28.9 22.7 34.9 Incremental Delay (d 2), s/veh 0.9 1.2 10.7 11.3 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 29.8 23.9 50.3 46.2 Level of Service (LOS) С С D D 26.1 С 50.3 0.0 46.2 Approach Delay, s/veh / LOS D D Intersection Delay, s/veh / LOS 41.3 D **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.40 1.71 В 1.74 В 1.97 Α В Bicycle LOS Score / LOS 1.33 Α 1.29 Α 1.65


HCS7 Roundabouts Report																			
General Information							Site Information Intersection Thompson's Sta and Pantall												
Analyst	FTG						Inte	ersection				Thomp	son's Sta	and F	Pantall				
Agency or Co.	FTG						E/W	V Street I	Name			Thompson's Station Road							
Date Performed	Sept 2	2018					N/S Street Name					Pantall Road							
Analysis Year	2020						Analysis Time Period (hrs)					0.25							
Time Analyzed	AM P	eak Hou					Peak Hour Factor					0.89							
Project Description	10886	(Back)					Juri	isdiction				Thompson's Station, TN							
Volume Adjustments	ıme Adjustments and Site Characteristics																		
Approach		E	В			W	В				NI	3				SB			
Movement	U	L	Т	R	U	L	Т	R	U		L	Т	R	U	L	Т	R		
Number of Lanes (N)	0	0	1	0	0	0	1	0	0		0	0	0	0	0	1	0		
Lane Assignment			L	Т				TR							•		LR		
Volume (V), veh/h	0	240	311		0		285	65						0	90		135		
Percent Heavy Vehicles, %	0	0	0		0		0	0						0	0		0		
Flow Rate (VPCE), pc/h	0	270	349		0		320	73		T				0	101		152		
Right-Turn Bypass		No	ne			No	ne				Noi	ne			1	None	•		
Conflicting Lanes	1														1				
Pedestrians Crossing, p/h	0															0			
Critical and Follow-Up Headway Adjustment																			
Approach EB								WB		Т		NB		Т		SB			
Lane				Right	Bypass	s Le	eft Right		Вура	s	Left	Right	Bypas	s l	Left	Right	Bypass		
Critical Headway (s)				4.9763			T	4.9763		T						4.9763			
Follow-Up Headway (s)				2.6087			T	2.6087								2.6087			
Flow Computations,	Capac	ity ar	ıd v/c	Ratios	;														
Approach		П		EB				WB		Т	NB			Т		SB			
Lane			Left	Right	Bypass	s Le	eft Right		Bypas	s	Left	Right	Bypas	s l	Left	Right	Bypass		
Entry Flow (v _e), pc/h				619.00			T	393.00		T						253.00			
Entry Volume veh/h				619.00			393.00									253.00			
Circulating Flow (v₂), pc/h				101				270		T		720				320			
Exiting Flow (vex), pc/h				450				472				343				0			
Capacity (C _{pce}), pc/h				1244.91				1047.79								995.70			
Capacity (c), veh/h				1244.91				1047.79								995.70			
v/c Ratio (x)				0.50				0.38								0.25			
Delay and Level of Se	ervice																		
Approach		EB						WB		П		NB				SB			
Lane			Left	Right	Bypass	s Le	ft	Right	Bypas	s	Left	Right	Bypas	s l	Left	Right	Bypass		
Lane Control Delay (d), s/veh	rol Delay (d), s/veh			8.2				7.4								6.1			
Lane LOS	ane LOS A							Α								Α			
95% Queue, veh 2.9								1.8								1.0			
Approach Delay, s/veh	eh 8.2					7.4							6.1						
Approach LOS				Α				Α		A									
Intersection Delay, s/veh LOS 7.5											A								

				HCS	7 Ro	unda	bo	uts F	Repo	t							
General Information							Site	e Info	rmati	on							
Analyst	FTG						Inte	ersection			П	Thomps	son's Sta	and F	Pantall		
Agency or Co.	FTG						E/W	V Street I	Name			Thomps	son's Sta	tion R	Road		
Date Performed	Sept 2	2018					N/S	Street N	lame			Pantall	Road				
Analysis Year	2020						Ana	alysis Tim	e Perio	(hrs)		0.25					
Time Analyzed	PM Pe	eak Hour					Pea	ık Hour F	actor			0.99					
Project Description	10886	(Back)					Juri	isdiction				Thomps	son's Sta	tion, 1	ΓN		
Volume Adjustments	and S	Site C	haract	eristic	s												
Approach		E	В			W	В				NE	3				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L		Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0		0	0	0	0	1	0
Lane Assignment			L	Т				TR				•			•		LR
Volume (V), veh/h	0	177	300		0		352	98						0	94		559
Percent Heavy Vehicles, %	0	0	0		0		0	0						0	0		0
Flow Rate (VPCE), pc/h	0	179	303		0		356	99						0	95		565
Right-Turn Bypass		No	ne				Nor	ne				Vone					
Conflicting Lanes		1										1					
Pedestrians Crossing, p/h	0										0						
Critical and Follow-U	р Неа	adway	/ Adju	stmen	t												
Approach				EB				WB				NB		T		SB	
Lane			Left	Right	Bypass	Lef	ft	Right	Bypass	Le	ft	Right	Bypas	s I	Left	Right	Bypass
Critical Headway (s)				4.9763				4.9763								4.9763	
Follow-Up Headway (s)				2.6087				2.6087								2.6087	
Flow Computations,	Capac	ity ar	ıd v/c	Ratios						<u> </u>							
Approach		П		EB		Т		WB		Т		NB		Т		SB	
Lane			Left	Right	Bypass	Lef	ft	Right	Bypass	Le	ft	Right	Bypas	s I	Left	Right	Bypass
Entry Flow (v _e), pc/h				482.00				455.00								660.00	
Entry Volume veh/h				482.00				455.00								660.00	
Circulating Flow (v₂), pc/h				95				179				577				356	
Exiting Flow (vex), pc/h				398				921				278				0	
Capacity (C _{pce}), pc/h				1252.55				1149.70								959.80	
Capacity (c), veh/h				1252.55				1149.70								959.80	
v/c Ratio (x)				0.38				0.40								0.69	
Delay and Level of Se	ervice																
Approach				EB				WB				NB		T		SB	
Lane			Left	Right	Bypass	Lef	ft	Right	Bypass	Le	ft	Right	Bypas	s l	Left	Right	Bypass
Lane Control Delay (d), s/veh				6.6				7.1								15.0	
Lane LOS				А				Α								С	
95% Queue, veh				1.8				1.9								5.7	
Approach Delay, s/veh				6.6				7.1								15.0	
Approach LOS				Α				Α								С	
Intersection Delay, s/veh LOS	5					10.2								В			

HCS7 Signalized Intersection Results Summary Intersection Information **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date Sep 26, 2018 Area Type Other AM Peak Hour PHF 0.90 Jurisdiction Thompson's Station, TN Time Period Urban Street Thompson's Station Road Analysis Year 2020 (Back) **Analysis Period** 1> 7:00 Intersection Thompson's Sta and Bu... File Name 6 bgam.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 419 Demand (v), veh/h 134 110 210 231 576 0 **Signal Information** Cycle, s 100.0 Reference Phase 2 Offset, s 0 Reference Point End Green 34.0 0.0 0.0 0.0 54.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 0.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S 2.0 0.0 On Red 2.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 2 6 8 Case Number 8.0 8.0 12.0 Phase Duration, s 40.0 40.0 60.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 Max Allow Headway (MAH), s 0.0 0.0 3.2 Queue Clearance Time (g_s), s 56.0 Green Extension Time (g_e), s 0.0 0.0 0.0 Phase Call Probability 1.00 1.00 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R Т R L Т R L Т R L **Assigned Movement** 2 12 1 6 3 8 18 Adjusted Flow Rate (v), veh/h 271 490 1106 930 Adjusted Saturation Flow Rate (s), veh/h/ln 1757 1720 12.0 22.0 Queue Service Time (g_s), s 54.0 Cycle Queue Clearance Time (g c), s 12.0 34.0 54.0 Green Ratio (g/C) 0.34 0.34 0.54 Capacity (c), veh/h 598 369 929 Volume-to-Capacity Ratio (X) 0.454 1.327 1.190 Back of Queue (Q), ft/ln (95 th percentile) 223.8 1003. 1561. 9 4 Back of Queue (Q), veh/ln (95 th percentile) 9.0 40.2 62.5 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 Uniform Delay (d 1), s/veh 40.5 23.0 25.8 Incremental Delay (d 2), s/veh 2.5 164.8 96.4 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 28.2 205.3 119.4 Control Delay (d), s/veh Level of Service (LOS) С F F Approach Delay, s/veh / LOS 28.2 С 205.3 F 119.4 F 0.0 Intersection Delay, s/veh / LOS 128.7 F **Multimodal Results** FB WB NB SB Pedestrian LOS Score / LOS 1.40 1.73 1.73 Α 1.40 Α В В Bicycle LOS Score / LOS 0.93 Α 1.30 Α 2.31 В


HCS7 Signalized Intersection Results Summary Intersection Information **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date Sep 26, 2018 Area Type Other PM Peak Hour PHF 0.95 Jurisdiction Thompson's Station, TN Time Period Urban Street Thompson's Station Road Analysis Year 2020 (Back) **Analysis Period** 1> 7:00 6_bgpm.xus Intersection Thompson's Sta and Bu... File Name **Project Description** 10886 WB **Demand Information** EB NB SB Approach Movement L R L R L R L R 640 Demand (v), veh/h 323 521 282 144 0 181 **Signal Information** Cycle, s 90.0 Reference Phase 2 Offset, s 0 Reference Point End Green 63.0 0.0 0.0 0.0 15.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 0.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S 2.0 0.0 On Red 2.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL **SBT Assigned Phase** 2 6 8 Case Number 8.0 8.0 12.0 Phase Duration, s 69.0 69.0 21.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 Max Allow Headway (MAH), s 0.0 0.0 3.2 Queue Clearance Time (g_s), s 17.0 Green Extension Time (g_e), s 0.0 0.0 0.0 Phase Call Probability 1.00 1.00 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R Т R L Т R L Т R L **Assigned Movement** 2 12 1 6 3 8 18 Adjusted Flow Rate (v), veh/h 888 971 342 428 Adjusted Saturation Flow Rate (s), veh/h/ln 1710 1693 29.2 33.8 Queue Service Time (g_s), s 15.0 Cycle Queue Clearance Time (g c), s 29.2 63.0 15.0 0.70 Green Ratio (g/C) 0.70 0.17 Capacity (c), veh/h 1197 367 282 Volume-to-Capacity Ratio (X) 0.742 2.641 1.213 Back of Queue (Q), ft/ln (95 th percentile) 350.1 3695 603 Back of Queue (Q), veh/ln (95 th percentile) 14.0 147.8 24.1 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 Uniform Delay (d 1), s/veh 8.4 31.2 37.5 746.2 Incremental Delay (d 2), s/veh 4.2 123.8 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 Control Delay (d), s/veh 12.6 777.4 161.3 Level of Service (LOS) В F F 12.6 В 777.4 F 161.3 F 0.0 Approach Delay, s/veh / LOS Intersection Delay, s/veh / LOS 373.0 F **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.34 1.34 1.73 1.73 Α Α В В Bicycle LOS Score / LOS 1.95 В 2.09 1.05 Α

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Thompson's St and Clayton
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Thompson's Sta Road
Analysis Year	2020	North/South Street	Clayton Arnold Road
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.91
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Back)		

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		LT						TR						L		R
Volume (veh/h)		32	153				398	465						88		83
Percent Heavy Vehicles (%)		0												0		0
Proportion Time Blocked																
Percent Grade (%)														(0	
Right Turn Channelized														Ν	lo	
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30
Delay, Queue Length, and	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		35												97		91
Capacity, c (veh/h)		732												283		447
v/c Ratio		0.05												0.34		0.20
95% Queue Length, Q ₉₅ (veh)		0.2												1.5		0.8
Control Delay (s/veh)		10.2												24.2		15.1
Level of Service (LOS)		В												С		С
Approach Delay (s/veh)		2	.2											19	9.8	
Approach LOS														(С	

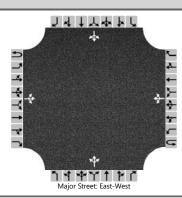
	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Thompson's St and Clayton
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Thompson's Sta Road
Analysis Year	2020	North/South Street	Clayton Arnold Road
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Back)		

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		LT						TR						L		R
Volume (veh/h)		71	393				308	101						585		86
Percent Heavy Vehicles (%)		0												0		0
Proportion Time Blocked																
Percent Grade (%)														()	
Right Turn Channelized														Ν	lo	
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30
Delay, Queue Length, and	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		76												629		92
Capacity, c (veh/h)		1131												262		667
v/c Ratio		0.07												2.41		0.14
95% Queue Length, Q ₉₅ (veh)		0.2												50.6		0.5
Control Delay (s/veh)		8.4												673.9		11.3
Level of Service (LOS)		А												F		В
Approach Delay (s/veh)		1	.9											58	9.0	
Approach LOS															F	

HCS7 Signalized Intersection Results Summary 144444 **General Information Intersection Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date 12/21/2014 Area Type Other PHF 0.95 Jurisdiction Thompson's Station, TN Time Period AM Peak Hour Urban Street Columbia Pike Analysis Year 2020 (Back) **Analysis Period** 1> 7:00 Columbia Pk and Thom... File Name Intersection 8 bgam.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R R L R 100 Demand (v), veh/h 218 56 136 213 102 198 96 1310 54 872 177 **Signal Information** JI., Cycle, s 140.0 Reference Phase 2 Offset, s 0 Reference Point End 0.5 2.0 10.0 Green 5.3 89.1 9.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 4.0 4.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 0.0 2.0 2.0 0.0 2.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 4 3 8 2 6 7 5 1 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 17.0 18.0 15.0 16.0 11.9 95.7 11.3 95.1 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 3.3 3.1 3.3 3.1 0.0 3.1 0.0 Queue Clearance Time (g_s), s 13.0 14.0 11.0 12.0 4.7 3.5 Green Extension Time (g_e), s 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 Phase Call Probability 1.00 1.00 1.00 1.00 0.98 0.89 1.00 1.00 1.00 1.00 0.00 0.00 Max Out Probability **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 7 4 14 3 8 18 5 2 12 1 6 16 Adjusted Flow Rate (v), veh/h 229 202 224 316 101 1484 57 1104 1810 1685 1810 1698 1810 1876 1810 1844 Adjusted Saturation Flow Rate (s), veh/h/ln 11.0 12.0 9.0 10.0 2.7 89.7 1.5 75.9 Queue Service Time (g_s), s Cycle Queue Clearance Time (q c), s 11.0 12.0 9.0 10.0 2.7 89.7 1.5 75.9 Green Ratio (g/C) 0.15 0.09 0.14 0.07 0.68 0.64 0.67 0.64 Capacity (c), veh/h 194 144 168 121 176 1201 121 1174 Volume-to-Capacity Ratio (X) 1.185 1.399 1.337 2.603 0.574 1.235 0.471 0.941 Back of Queue (Q), ft/ln (95 th percentile) 335.4 553.9 418.4 1157 100.9 2613. 57 1127.9 8 Back of Queue (Q), veh/ln (95 th percentile) 13.4 22.2 16.7 46.3 4.0 104.6 2.3 45.1 Queue Storage Ratio (RQ) (95 th percentile) 3.73 3.96 4.18 7.23 0.63 5.23 0.36 2.26 65.0 36.0 Uniform Delay (d 1), s/veh 58.6 64.0 59.9 32.9 25.2 23.0 Incremental Delay (d 2), s/veh 123.5 216.0 186.1 744.8 1.1 113.3 1.1 15.4 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 280.0 246.1 34.0 138.5 37.1 Control Delay (d), s/veh 182.1 809.8 38.5 Level of Service (LOS) F F С D D Approach Delay, s/veh / LOS 227.9 F 575.7 F 38.4 131.8 D Intersection Delay, s/veh / LOS 178.3 **Multimodal Results** FB WB NB SB Pedestrian LOS Score / LOS 1.96 1.89 В 1.96 В В 1.89 В Bicycle LOS Score / LOS 1.20 Α 1.38 Α 3.10 2.40

HCS7 Signalized Intersection Results Summary 144444 **General Information Intersection Information** FTG Duration, h 0.25 Agency FTG Analyst Analysis Date 12/21/2014 Area Type Other PM Peak Hour PHF 0.97 Jurisdiction Thompson's Station, TN Time Period Urban Street Columbia Pike Analysis Year 2020 (Back) **Analysis Period** 1> 7:00 Columbia Pk and Thom... File Name Intersection 8 bgpm.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 238 Demand (v), veh/h 325 109 254 106 130 177 1305 308 115 1420 323 **Signal Information** JI., Cycle, s 140.0 Reference Phase 2 MATE OF Offset, s 0 Reference Point End 8.0 Green 7.2 4.9 81.9 7.0 1.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 4.0 4.0 4.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 0.0 2.0 2.0 2.0 2.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 4 3 8 2 6 7 5 1 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 20.0 21.0 13.0 14.0 18.1 92.8 13.2 87.9 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 3.2 3.1 3.2 3.1 0.0 3.1 0.0 17.0 Queue Clearance Time (g_s), s 16.0 9.0 10.0 11.9 7.1 Green Extension Time (g_e), s 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0 Phase Call Probability 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.00 0.00 Max Out Probability **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 7 4 14 3 8 18 5 2 12 1 6 16 335 374 245 243 182 1663 119 1797 Adjusted Flow Rate (v), veh/h 1810 1687 1810 1729 1810 1837 1810 Adjusted Saturation Flow Rate (s), veh/h/ln 1839 7.0 9.9 86.8 5.1 81.9 Queue Service Time (g_s), s 14.0 15.0 8.0 Cycle Queue Clearance Time (q c), s 14.0 15.0 7.0 8.0 9.9 86.8 5.1 81.9 Green Ratio (g/C) 0.17 0.11 0.11 0.06 0.68 0.62 0.64 0.58 99 Capacity (c), veh/h 232 181 142 208 1139 144 1075 Volume-to-Capacity Ratio (X) 1.442 2.070 1.729 2.463 0.877 1.460 0.821 1.671 Back of Queue (Q), ft/ln (95 th percentile) 623.4 1242. 626.6 892.8 278.4 3848. 193.3 4899.1 5 9 Back of Queue (Q), veh/ln (95 th percentile) 24.9 49.7 25.1 35.7 11.1 154.0 7.7 196.0 Queue Storage Ratio (RQ) (95 th percentile) 6.93 8.87 6.27 5.58 1.74 7.70 1.21 9.80 66.0 42.2 Uniform Delay (d 1), s/veh 56.8 62.5 62.7 48.8 26.6 29.1 Incremental Delay (d 2), s/veh 221.5 499.9 355.8 687.7 8.5 211.9 4.4 306.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 562.4 418.5 238.5 46.6 Control Delay (d), s/veh 278.3 753.7 57.4 335.2 Level of Service (LOS) F F D Е Approach Delay, s/veh / LOS 428.2 F 585.4 220.5 F 317.3 Intersection Delay, s/veh / LOS 323.6 **Multimodal Results** FB WB NB SB Pedestrian LOS Score / LOS 1.96 1.89 В 1.96 В В 1.90 В Bicycle LOS Score / LOS 1.66 В 1.29 Α 3.53 3.65 D

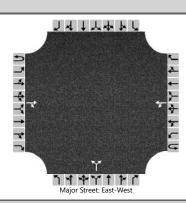
HCS7 Signalized Intersection Results Summary Intersection Information 144444 **General Information** FTG Duration, h 0.25 Agency FTG 12/21/2014 Analyst Analysis Date Area Type Other PHF 0.95 Jurisdiction Thompson's Station, TN Time Period AM Peak Hour Urban Street Columbia Pike Analysis Year 2020 (Back) **Analysis Period** 1> 7:00 Columbia Pk and Thom... File Name Intersection 8 bgam imp.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R R L R 100 Demand (v), veh/h 218 56 136 213 102 198 96 1310 54 872 177 **Signal Information** JI., Cycle, s 100.0 Reference Phase 2 BAT T Offset, s 0 Reference Point End 0.9 7.0 5.2 15.5 Green 4.8 42.6 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 4.0 4.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 0.0 2.0 2.0 0.0 2.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 4 3 8 2 6 7 5 1 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 13.0 21.5 18.2 26.7 11.6 49.5 10.8 48.6 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 3.3 3.1 3.3 3.1 0.0 3.1 0.0 Queue Clearance Time (g_s), s 9.0 13.5 12.1 20.1 5.1 3.7 Green Extension Time (g_e), s 0.0 0.7 0.2 0.6 0.2 0.0 0.0 0.0 Phase Call Probability 1.00 1.00 1.00 1.00 0.94 0.79 1.00 0.19 0.46 0.41 0.00 0.00 Max Out Probability SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 7 4 14 3 8 18 5 2 12 1 6 16 Adjusted Flow Rate (v), veh/h 229 202 224 316 101 749 735 57 569 536 1810 1685 1810 1698 1810 1900 1852 1810 1900 1788 Adjusted Saturation Flow Rate (s), veh/h/ln 7.0 18.1 3.1 36.7 37.2 1.7 24.5 24.5 Queue Service Time (g_s), s 11.5 10.1 Cycle Queue Clearance Time (q c), s 7.0 11.5 10.1 18.1 3.1 36.7 37.2 1.7 24.5 24.5 0.23 0.21 0.44 0.47 Green Ratio (g/C) 0.16 0.29 0.48 0.44 0.43 0.43 Capacity (c), veh/h 205 262 341 352 268 827 806 174 810 763 Volume-to-Capacity Ratio (X) 1.118 0.773 0.658 0.898 0.377 0.906 0.912 0.327 0.702 0.702 Back of Queue (Q), ft/ln (95 th percentile) 298.8 220.4 196.2 348.7 55 655.7 653.8 31.1 427.8 409.1 Back of Queue (Q), veh/ln (95 th percentile) 12.0 8.8 7.8 13.9 2.2 26.2 26.2 1.2 17.1 16.4 Queue Storage Ratio (RQ) (95 th percentile) 3.32 1.57 1.96 2.18 0.34 1.31 1.31 0.19 0.86 0.82 29.8 26.3 22.8 Uniform Delay (d 1), s/veh 38.2 40.5 38.6 17.9 26.4 23.5 23.5 Incremental Delay (d 2), s/veh 98.2 6.0 1.7 17.3 0.3 15.3 16.4 0.4 5.0 5.4 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 136.5 46.6 31.5 55.9 18.2 41.7 42.8 23.2 28.5 28.8 Level of Service (LOS) F D С В D D С С С Ε 94.4 F 45.8 40.7 D 28.4 С Approach Delay, s/veh / LOS D Intersection Delay, s/veh / LOS 43.8 D **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.30 В 2.30 В 1.91 1.91 В В Bicycle LOS Score / LOS 1.20 Α 1.38 Α 1.80 В 1.45


HCS7 Signalized Intersection Results Summary Intersection Information 144444 **General Information** Agency FTG Duration, h 0.25 FTG 12/21/2014 Analyst Analysis Date Area Type Other PM Peak Hour PHF 0.97 Jurisdiction Thompson's Station, TN Time Period Urban Street Columbia Pike Analysis Year 2020 (Back) **Analysis Period** 1> 7:00 Columbia Pk and Thom... File Name 8 bgpm imp.xus Intersection **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 325 109 254 238 308 Demand (v), veh/h 106 130 177 1305 115 1420 323 **Signal Information** JI., Cycle, s 90.0 Reference Phase 2 MATE OF Offset, s 0 Reference Point End Green 5.7 4.0 6.0 1.4 41.9 7.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 4.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 0.0 2.0 2.0 0.0 2.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 4 3 8 2 6 7 5 1 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 17.0 16.0 13.0 12.0 13.1 49.3 11.7 47.9 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 3.2 3.1 3.2 3.1 0.0 3.1 0.0 Queue Clearance Time (g_s), s 13.0 12.0 9.0 8.0 6.9 5.0 Green Extension Time (g_e), s 0.0 0.0 0.0 0.0 0.3 0.0 0.1 0.0 Phase Call Probability 1.00 1.00 1.00 1.00 0.99 0.95 1.00 1.00 1.00 1.00 0.00 Max Out Probability 0.01 **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 7 4 14 3 8 18 5 2 12 1 6 16 Adjusted Flow Rate (v), veh/h 335 374 245 243 182 846 817 119 907 890 1810 1687 1810 1729 1810 1900 1776 1810 1900 1780 Adjusted Saturation Flow Rate (s), veh/h/ln 11.0 10.0 7.0 4.9 37.4 39.8 3.0 41.9 41.9 Queue Service Time (g_s), s 6.0 37.4 Cycle Queue Clearance Time (q c), s 11.0 10.0 7.0 6.0 4.9 39.8 3.0 41.9 41.9 0.53 Green Ratio (g/C) 0.19 0.11 0.14 0.07 0.54 0.48 0.48 0.47 0.47 Capacity (c), veh/h 301 188 221 115 223 914 855 199 885 829 Volume-to-Capacity Ratio (X) 1.113 1.996 1.112 2.111 0.820 0.925 0.956 0.594 1.025 1.074 Back of Queue (Q), ft/ln (95 th percentile) 337.1 1126.7 295.7 785.2 89.8 658.5 686.3 51.8 875.6 969.6 Back of Queue (Q), veh/ln (95 th percentile) 13.5 45.1 11.8 31.4 3.6 26.3 27.5 2.1 35.0 38.8 Queue Storage Ratio (RQ) (95 th percentile) 3.75 8.05 2.96 4.91 0.56 1.32 1.37 0.32 1.94 1.75 40.0 42.0 20.4 Uniform Delay (d 1), s/veh 36.6 38.9 21.4 21.8 22.4 24.0 24.0 466.6 Incremental Delay (d 2), s/veh 85.6 93.7 528.1 2.9 16.3 21.8 1.1 36.8 52.9 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 122.1 506.6 132.7 570.1 24.2 38.2 44.3 21.5 60.8 77.0 Level of Service (LOS) F С D D С F F 325.0 F 350.4 39.5 D 65.9 Ē Approach Delay, s/veh / LOS Intersection Delay, s/veh / LOS 121.2 **Multimodal Results** ΕB WB NB SB Pedestrian LOS Score / LOS 2.30 В 2.30 В 1.90 1.90 В В Bicycle LOS Score / LOS 1.66 В 1.29 Α 2.01 В 2.07

BACKGROUND SATURDAY CONDITIONS

HCS7 Signalized Intersection Results Summary Intersection Information 747477 **General Information** Agency FTG Duration, h 0.25 FTG 12/21/2014 Analyst Analysis Date Area Type Other PM Peak Hour PHF 0.98 Jurisdiction Thompson's Station, TN Time Period Urban Street Columbia Pike Analysis Year 2020 (Back) **Analysis Period** 1> 7:00 Intersection Columbia Pk and Critz L... File Name 1 bgpm.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R R L R L R Demand (v), veh/h 6 100 259 24 66 332 **Signal Information** Cycle, s 50.0 Reference Phase 2 Offset, s 0 Reference Point End Green 3.6 23.7 0.0 4.7 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 0.0 On Red 2.0 2.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 8 2 1 6 Case Number 9.0 8.3 1.0 4.0 Phase Duration, s 10.7 29.7 9.6 39.3 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.4 0.0 3.1 0.0 Queue Clearance Time (g_s), s 4.8 2.8 Green Extension Time (g_e), s 0.0 0.0 0.1 0.0 Phase Call Probability 0.78 0.61 1.00 0.00 Max Out Probability SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 3 18 2 12 1 6 Adjusted Flow Rate (v), veh/h 6 102 146 143 67 339 1810 1610 1900 1843 1810 1809 Adjusted Saturation Flow Rate (s), veh/h/ln 0.2 2.8 3.4 2.2 8.0 1.7 Queue Service Time (g_s), s Cycle Queue Clearance Time (g c), s 0.2 2.8 3.4 2.2 8.0 1.7 0.47 0.47 0.59 Green Ratio (g/C) 0.09 0.17 0.67 Capacity (c), veh/h 169 268 900 873 725 2412 Volume-to-Capacity Ratio (X) 0.036 0.381 0.162 0.164 0.093 0.140 Back of Queue (Q), ft/ln (95 th percentile) 2.7 42.4 34.2 33.8 8.4 14.5 Back of Queue (Q), veh/ln (95 th percentile) 0.1 1.7 1.4 1.4 0.3 0.6 Queue Storage Ratio (RQ) (95 th percentile) 0.03 0.27 0.07 0.07 0.05 0.03 Uniform Delay (d 1), s/veh 20.6 18.6 7.5 7.5 4.7 3.1 Incremental Delay (d 2), s/veh 0.0 0.3 0.4 0.4 0.0 0.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 20.7 18.9 7.9 7.9 4.8 3.2 Level of Service (LOS) С В Α Α Α Α 0.0 19.0 В 7.9 Α 3.4 Approach Delay, s/veh / LOS Α Intersection Delay, s/veh / LOS 7.1 Α **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.13 В 2.30 В 1.88 0.64 В Α Bicycle LOS Score / LOS 0.73 Α 0.82 Α

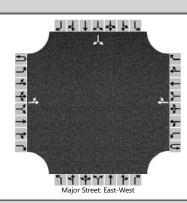
HCS7 Signalized Intersection Results Summary Intersection Information 747477 **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date 12/21/2014 Area Type Other PM Peak Hour PHF 0.98 Jurisdiction Thompson's Station, TN Time Period Urban Street Columbia Pike Analysis Year 2020 (Back) **Analysis Period** 1> 7:00 1 bgpm imp.xus Intersection Columbia Pk and Critz L... File Name **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R Demand (v), veh/h 6 100 259 24 66 332 **Signal Information** Cycle, s 50.0 Reference Phase 2 Offset, s 0 Reference Point End Green 3.6 23.7 0.0 4.7 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 0.0 On Red 2.0 2.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 8 2 1 6 Case Number 9.0 8.3 1.0 4.0 Phase Duration, s 10.7 29.7 9.6 39.3 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.4 0.0 3.1 0.0 Queue Clearance Time (g_s), s 3.5 2.8 Green Extension Time (g_e), s 0.0 0.0 0.0 0.0 Phase Call Probability 0.78 0.61 1.00 0.00 Max Out Probability SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 3 18 2 12 1 6 Adjusted Flow Rate (v), veh/h 6 102 146 143 67 339 1810 1425 1900 1843 1810 1809 Adjusted Saturation Flow Rate (s), veh/h/ln 0.2 1.5 2.8 2.2 8.0 1.7 Queue Service Time (g_s), s Cycle Queue Clearance Time (g c), s 0.2 1.5 2.8 2.2 8.0 1.7 0.47 0.47 0.59 Green Ratio (g/C) 0.09 0.17 0.67 474 Capacity (c), veh/h 169 900 873 738 2412 Volume-to-Capacity Ratio (X) 0.036 0.215 0.162 0.164 0.091 0.140 Back of Queue (Q), ft/ln (95 th percentile) 2.7 20.3 34.2 33.8 8.3 14.5 Back of Queue (Q), veh/ln (95 th percentile) 0.1 8.0 1.4 1.4 0.3 0.6 Queue Storage Ratio (RQ) (95 th percentile) 0.03 0.13 0.07 0.07 0.05 0.03 18.0 Uniform Delay (d 1), s/veh 20.6 7.5 7.5 4.7 3.1 Incremental Delay (d 2), s/veh 0.0 0.1 0.4 0.4 0.0 0.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 20.7 18.1 7.9 7.9 4.7 3.2 Level of Service (LOS) С В Α Α Α Α 0.0 18.3 В 7.9 Α 3.4 Approach Delay, s/veh / LOS Α Intersection Delay, s/veh / LOS 7.0 Α **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.13 В 2.30 В 2.07 0.64 В Α Bicycle LOS Score / LOS 0.73 Α 0.82 Α


	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Critz and Clayton
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Critz Lane
Analysis Year	2020	North/South Street	Clayton Arnold/Paddock
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Back)		

Vehicle Volumes and Adj	ustme	nts															
Approach	T	Eastk	oound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0	
Configuration			LTR				LTR				LTR				LTR		
Volume (veh/h)		6	28	56		19	33	22		55	11	19		10	13	18	
Percent Heavy Vehicles (%)		0				0				0	0	0		0	0	0	
Proportion Time Blocked																	
Percent Grade (%))				0			
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up Ho	eadwa	ys															
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2	
Critical Headway (sec)		4.10				4.10				7.10	6.50	6.20		7.10	6.50	6.20	
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3	
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30	
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)		7				21					92				45		
Capacity, c (veh/h)		1557				1516					788				826		
v/c Ratio		0.00				0.01					0.12				0.05		
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.4				0.2		
Control Delay (s/veh)		7.3				7.4					10.2				9.6		
Level of Service (LOS)		А				А					В				А		
Approach Delay (s/veh)		C	.5			2	.0			10).2			9	.6		
Approach LOS											В				4		

				HCS	7 Rou	ndab	out	:s Re	eport							
General Information						s	ite lı	nfori	matio	า						
Analyst	FTG					П	nterse	ction			Critz an	d Claytor	Arnol	d		
Agency or Co.	FTG					E	/W St	reet Na	ame		Critz La	ne				
Date Performed	Sept 2	2018				1	N/S Str	eet Na	ame		Clayton	Arnold R	oad			
Analysis Year	2020					A	Analysi	s Time	Period (hrs)	0.25					
Time Analyzed	PM Pe	ak Houi				F	Peak H	our Fa	ctor		0.92					
Project Description	10886	(Back)				J	urisdic	tion			Thomps	on's Stat	ion, TN	1		
Volume Adjustments	and S	Site C	haract	teristic	s											
Approach		Е	В			WB				N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment			LT	R			LTF	₹			LTR				ı	LTR
Volume (V), veh/h	0	6	28	56	0	19	33	22	0	55	11	19	0	10	13	18
Percent Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Flow Rate (VPCE), pc/h	0	7	30	61	0	21 .	36	24	0	60	12	21	0	11	14	20
Right-Turn Bypass		No	ne			None				No	ne			١	None	
Conflicting Lanes			1				1					1				
Pedestrians Crossing, p/h		0				0					0					
Critical and Follow-U	р Неа	adway	, Adju	stment	t											
Approach				EB			W	/B			NB				SB	
Lane			Left	Right	Bypass	Left	Rig	ght	Bypass	Left	Right	Bypass	Le	ft	Right	Bypass
Critical Headway (s)				4.9763			4.9	763			4.9763				4.9763	
Follow-Up Headway (s)				2.6087			2.6	087			2.6087				2.6087	
Flow Computations,	Capac	ity ar	ıd v/c	Ratios												
Approach				EB			V	/B			NB				SB	
Lane			Left	Right	Bypass	Left	Rig	ght	Bypass	Left	Right	Bypass	Le	ft	Right	Bypass
Entry Flow (v _e), pc/h		\Box		98.00			81	.00			93.00				45.00	
Entry Volume veh/h				98.00			81	.00			93.00				45.00	
Circulating Flow (v _c), pc/h				46			7	9			48				117	
Exiting Flow (vex), pc/h				62			1	16			43				96	
Capacity (c _{pce}), pc/h				1316.74			127	3.16			1314.06				1224.76	
Capacity (c), veh/h				1316.74			127	3.16			1314.06				1224.76	
v/c Ratio (x)				0.07			0.0	06			0.07				0.04	
Delay and Level of Se	rvice															
Approach				EB			V	/B			NB				SB	
Lane			Left	Right	Bypass	Left	Rig	ght	Bypass	Left	Right	Bypass	Le	ft	Right	Bypass
Lane Control Delay (d), s/veh				3.3			3	.3			3.3				3.2	
Lane LOS				Α			1	4			А				Α	
95% Queue, veh				0.2			0	.2			0.2				0.1	
Approach Delay, s/veh				3.3			3	.3			3.3				3.2	
Approach LOS				А				Α			А				Α	
Intersection Delay, s/veh LOS	;				3	3.3							A			

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Critz and Pantall
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Critz Lane
Analysis Year	2020	North/South Street	Pantall Road
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Back)		

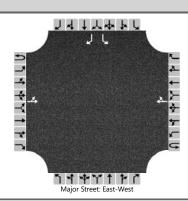

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastk	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			52	5		34	70			4		42				
Percent Heavy Vehicles (%)						0				0		0				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.10				6.40		6.20				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.20				3.50		3.30				
Delay, Queue Length, and	d Leve	l of S	ervice													
Flow Rate, v (veh/h)						36					48					
Capacity, c (veh/h)						1556					987					
v/c Ratio						0.02					0.05					
95% Queue Length, Q ₉₅ (veh)						0.1					0.2					
Control Delay (s/veh)						7.4					8.8					
Level of Service (LOS)						А					А					
Approach Delay (s/veh)						2	.5			8	.8					
Approach LOS										,	4					

Generated: 9/26/2018 2:59:18 PM

				HCS.	7 Ro	unda	abc	outs F	Repo	rt							
General Information							Site	e Info	rmati	on							
Analyst	FTG						Inte	ersection				Critz an	d Pantall				
Agency or Co.	FTG						E/V	V Street I	Name			Critz Laı	ne				
Date Performed	Sept 2	2018					N/S	S Street N	lame			Pantall I	_ane				
Analysis Year	2020						Ana	alysis Tim	e Perio	d (hr	rs)	0.25					
Time Analyzed	PM Pe	eak Houi					Pea	ak Hour F	actor			0.92					
Project Description	10886	(Back)					Jur	isdiction				Thomps	on's Sta	tion, T	N		
Volume Adjustments	and S	Site C	haract	teristic	s												
Approach		E	В			W	/B		T		NI	3				SB	
Movement	U	L	Т	R	U	L	Т	R	U		L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	T	0	1	0	0	0	0	0
Lane Assignment			Т	R				LT				LR					
Volume (V), veh/h	0		52	5	0	34	70		0	П	4		42				
Percent Heavy Vehicles, %	0		0	0	0	0	0		0		0		0				
Flow Rate (VPCE), pc/h	0		57	5	0	37	76		0	T	4		46				
Right-Turn Bypass	No	ne				Noi	ne				None						
Conflicting Lanes		1	1		\top		1										
Pedestrians Crossing, p/h	()				0											
Critical and Follow-U	р Неа	adway	, Adju	stmen	t												
Approach				EB				WB		Т		NB		Т		SB	
Lane			Left	Right	Bypass	s Le	eft	Right	Bypas	s	Left	Right	Bypass	5 L	_eft	Right	Bypass
Critical Headway (s)				4.9763				4.9763		T		4.9763					
Follow-Up Headway (s)				2.6087				2.6087				2.6087					
Flow Computations,	Capac	ity ar	ıd v/c	Ratios													
Approach		\neg		EB				WB		Т		NB		Т		SB	
Lane			Left	Right	Bypass	s Le	eft	Right	Bypas	s	Left	Right	Bypass	5 L	_eft	Right	Bypass
Entry Flow (v _e), pc/h				62.00				113.00		Т		50.00					
Entry Volume veh/h				62.00				113.00				50.00					
Circulating Flow (v₀), pc/h		\Box		37				4		Ť		57				117	
Exiting Flow (vex), pc/h				103				80				0				42	
Capacity (c _{pce}), pc/h				1328.89				1374.38		T		1302.05					
Capacity (c), veh/h				1328.89				1374.38				1302.05					
v/c Ratio (x)				0.05				0.08		T		0.04					
Delay and Level of Se	ervice																
Approach				EB				WB		Т		NB		Τ		SB	
Lane			Left	Right	Bypass	s Le	eft	Right	Bypas	s	Left	Right	Bypass	L	_eft	Right	Bypass
Lane Control Delay (d), s/veh				3.1				3.3				3.1					
Lane LOS				Α				Α				Α					
95% Queue, veh				0.1				0.3				0.1					
Approach Delay, s/veh				3.1				3.3				3.1					
Approach LOS				Α				Α				Α					
Intersection Delay, s/veh LOS	5					3.2								Α			

		HCS	7 Sig	nalize	d Ir	nters	ect	ion R	esi	ults	Sun	nmar	y				
General Inform	ation									Int	areact	ion Inf	ormatio	nn .		14741	Ja l <u>u</u>
Agency	iation	FTG								-	ration,		0.25	<i>)</i>	- 1	11	
Analyst		FTG		Analys	ic Do	to 12	2/21/	2014			ea Typ		Other		4		t. ∆
Jurisdiction		Thompson's Station	TNI	Time F				ak Hou	r	PH		-	0.99			w €	2-
Urban Street		Columbia Pike	, IIN	Analys		-		Back)	<u> </u>	-	alysis	Doriod	1> 7:0	<u> </u>			-
Intersection		<u> </u>	Long	File Na						And	aiysis	renou	177.0	<i>.</i>	- R		-
Project Descript	lion	Lewisburg and Critz 10886	Lane	File iva	ime	4_	_bgpi	m.xus							- 1) † 14 14 Y	ta C
Project Descript	liori	10000		-													
Demand Inform	nation				E	в В		T	V	/B		T	NB		7	SB	
Approach Move				L	T	_	R	L		T	R	L	T	R		T	R
Demand (v), ve				70		\rightarrow	24					10	307		+-	319	94
Bomana (1), 1	011,711			. 0								10	001			0.0	Ů.
Signal Informa	tion						I	2	Т			\top					
Cycle, s	80.0	Reference Phase	2	1	25	10									4		~
Offset, s	0	Reference Point	End				<u>*1</u>	3	_		0.0			1	2	3	Y 4
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow			9.0 .0	8.0 4.0	0.		0.0	0.0			1 ∣◆	┙╸╽	
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0		.0	2.0	0.		0.0	0.0	一コ	5	6	7	8
. c.cccuc		Ciliani Cap I ii			0.0			12.0			U.U	10.0		•			
Timer Results				EBL		EB ⁻	Т	WBI	T	W	/BT	NBI		NBT	SB	L	SBT
Assigned Phase					\neg	4	\neg		\neg			5		2			6
Case Number					\rightarrow	9.0			\neg			1.0		4.0			7.3
Phase Duration,	. s				\neg	14.0	\rightarrow		\neg			11.0		66.0		\neg	55.0
Change Period,	<u> </u>	c). S			\rightarrow	6.0	-					4.0		6.0			6.0
Max Allow Head	•				\rightarrow	3.2	_		_			3.1		0.0			0.0
Queue Clearand		· · · · · · · · · · · · · · · · · · ·			_	4.9	-		\dashv			2.1		0.0			0.0
Green Extension		, - ,			_	0.0	$\overline{}$		_			0.0		0.0			0.0
Phase Call Prob		(90),0			\rightarrow	1.00	$\overline{}$		_			1.00	_	0.0			0.0
Max Out Probab					_	1.00	-		_			0.01					
Max Gat 1 Tobas	Jiiity					1.00						0.0					
Movement Gro	up Res	sults			EE	3	\neg		WI	В			NB			SB	
Approach Move	ment			L	Т		٦ ا	L	Т	П	R	L	Т	R	L	T	R
Assigned Mover	ment			7		1	4					5	2			6	16
Adjusted Flow F	Rate (v), veh/h		71		2	24			\neg		10	310			322	95
Adjusted Satura	tion Flo	ow Rate (s), veh/h/li	า	1810		16	10			\top		1810	1900			1900	1610
Queue Service	Time (g	g s), S		2.9		1	.0			\top		0.1	3.9			6.3	1.4
Cycle Queue Cl				2.9		1	.0					0.1	3.9			6.3	1.4
Green Ratio (g/		(3).		0.10		_	19			\top	$\overline{}$	0.72	0.75			0.61	0.71
Capacity (c), v				181		_	02			\top		821	1425			1164	1147
Volume-to-Capa		atio (X)		0.391		_	080					0.012	0.218			0.277	0.083
		/In (95 th percentile)		57			3.7			+		1.4	47			104.5	16.9
	· ,	eh/ln (95 th percenti		2.3		_	.7					0.1	1.9			4.2	0.7
	• •	RQ) (95 th percent		0.63		_	12					0.01	0.09			0.21	0.03
Uniform Delay (33.7		_	3.8			+		3.5	3.0			7.2	3.5
Incremental Del			0.5		_	.0			+		0.0	0.4			0.6	0.1	
Initial Queue De			0.0		_	.0					0.0	0.0			0.0	0.0	
Control Delay (•		34.2		_	.0 3.9					3.5	3.3			7.8	3.7
Level of Service				C C		_).9 C			+		A	A			A	A
Approach Delay				32.3		C		0.0				3.3		A	6.9		A
Intersection Delay				32.3			8.4					3.3			A		^
microection Del	ay, 5/VE						0.4	7							^		
Multimodal Res	eulte				EE	3			WI	R			NB			SB	
Pedestrian LOS		/I OS		1.95	_	В		1.95	_		В	0.64		A	1.8		В
Bicycle LOS Sco				1.90		F		1.90		<u>'</u>		1.02	_	A	1.1	_	A
Dicycle LOS 300	OIG / LC					Г						1.02	-		1.10	9	

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Thompson's St and Pantall
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Thompson's Sta Road
Analysis Year	2020	North/South Street	Pantall Road
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Back)		


Vehicle Volumes and Adju	stme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		43	188				294	3						3		36
Percent Heavy Vehicles (%)		0												0		0
Proportion Time Blocked																
Percent Grade (%)														(0	
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)		46													42	
Capacity, c (veh/h)		1252													693	
v/c Ratio		0.04													0.06	
95% Queue Length, Q ₉₅ (veh)		0.1													0.2	
Control Delay (s/veh)		8.0													10.5	
Level of Service (LOS)	A														В	
Approach Delay (s/veh)	1.8													10).5	
Approach LOS														В		

	HCS	7 Sig	nalize	d In	tersec	tion F	Resul	lts Sun	nmary	/				
General Information							T	Intersect	tion Info	rmatio	n n		14 Y44 T	Ja l _k
Agency FTG							_	Duration,		0.25)II		4	
Analyst FTG			Analys	sic Dat	e Jan 1	7 2019		Area Typ		Other		_ 		t.
	npson's Station	n Pood	Time F			eak Hou	_	PHF		0.93		₹ *	w . €	
	npson's Station		Analys				_		Dorind	1> 7:0	20	`		
	npson's Stallor				_	(Back)		Analysis	Period	1 / 1.0	JU	-		
		id Pa	File Na	ame	[5_bgt	om_sig.>	kus						বাকপ	1- 0
Project Description 1088	30													P. L.
Demand Information				EB		$\neg -$	WE	3	7	NB			SB	
Approach Movement			L	T	R	1	T	R	L	T	R	L	T	R
Demand (v), veh/h			43	188	_	_	294	_	_	<u> </u>	— · · ·	3	0	36
Demand (V), Ven/II		_	70	100	,	_	23-	, 1 2	_					30
Signal Information				T										
	erence Phase	2	1	=3		242						4		4
- , , , , , , , , , , , , , , , , , , ,	erence Point	End	1		1-1						1	2	3	4
	ult. Gap E/W	On	Green Yellow		45.1 4.0	3.3 4.0	0.0	0.0	0.0		7	—		
	ult. Gap L/VV	On	Red	2.0	2.0	2.0	0.0	0.0	0.0		5	6	7	8
T OF CO TWO CO T TIXOU CHILL	uit. Cup i i/C	On	Ttou	12.0	2.0	12.0	10.0	0.0	0.0					
Timer Results			EBI		EBT	WB	L	WBT	NBL	Т	NBT	SBI	L	SBT
Assigned Phase			5		2	T		6	- 112					4
Case Number			1.0		4.0			8.3		_				12.0
	Phase Duration, s							51.1		_		_		9.3
Change Period, (Y+Rc), s		9.6	\rightarrow	60.7			6.0						6.0	
Max Allow Headway (MAH)) s		3.1	_	0.0	_		0.0		_		_		3.3
Queue Clearance Time (g s			2.5	_	0.0			0.0		_		-		3.8
Green Extension Time ($g \in \mathcal{G}$,		0.0	_	0.0	-	_	0.0		_		-		0.0
Phase Call Probability	,, s 		0.59	-	0.0			0.0		_		-		0.56
Max Out Probability			0.00	_		-	_			+		+		0.24
Wax Out 1 Tobability			0.00	,										0.24
Movement Group Results				EB			WB			NB		$\overline{}$	SB	
Approach Movement			L	Т	R		Т	R	L	Т	R		Т	R
Assigned Movement			5	2			6	16				7	4	14
Adjusted Flow Rate (v), vel	h/h		46	202	_		319					_	42	
Adjusted Saturation Flow Ra		ln	1810	1900			1897						1624	
Queue Service Time (g s), s			0.5	1.8	_		5.0	$\overline{}$				_	1.8	
Cycle Queue Clearance Tim			0.5	1.8	1		5.0						1.8	
Green Ratio (g/C)	(90),0		0.72	0.78	+		0.64	_				_	0.05	
Capacity (c), veh/h			811	1483			1222						78	
Volume-to-Capacity Ratio (2)	X)		0.057	0.136			0.261						0.540	
Back of Queue (Q), ft/ln (9)	4.9	15.4			73.8						31.9	
Back of Queue (Q), veh/ln	· · · · · · · · · · · · · · · · · · ·	,	0.2	0.6			3.0						1.3	
· , ,	·		0.00	0.00			0.00						0.00	
Uniform Delay (d 1), s/veh	Queue Storage Ratio (RQ) (95 th percentile)						5.3						32.6	
Incremental Delay (d 2), s/v		0.0	1.9 0.2			0.5						2.2		
Initial Queue Delay (d 3), s/			0.0	0.2			0.0						0.0	
Control Delay (d), s/veh			3.1	2.1			5.8						34.7	
Level of Service (LOS)			A	A	1		3.6 A	+				1	C C	
,	Approach Delay, s/veh / LOS					5.8		Α	0.0			34.7		С
Intersection Delay, s/veh / Lo		2.3		A	3.6 3.4		Α	0.0			A 34.1		0	
intoracotion Delay, 3/Ven / Li						,. 								
				FR			WR			NR		$\overline{}$	SB	
Multimodal Results Pedestrian LOS Score / LOS			1.30	EB	A	1.63	WB	В	1.72	NB	В	1.95	SB 5	В

				HCS ⁻	7 Roı	ında	boı	uts R	lepor	t						
General Information							Site	Infor	matio	n						
Analyst	FTG						Inter	rsection			Thomp	son's Sta	and Par	ntall		
Agency or Co.	FTG						E/W	Street N	lame		Thomp	son's Stat	on Roa	ıd		
Date Performed	Sept 2	2018					N/S	Street N	lame		Pantall	Road				
Analysis Year	2020						Anal	lysis Tim	e Period	(hrs)	0.25					
Time Analyzed	PM Pe	eak Hour					Peak	Hour F	actor		0.99					
Project Description	10886	(Back)					Juris	diction			Thomp	son's Stat	on, TN			
Volume Adjustments	and S	Site C	haract	eristic	s											
Approach		E	В			WB	;			N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	0	0	0	0	1	0
Lane Assignment			Ľ	Т				TR								LR
Volume (V), veh/h	0	43	188		0		294	3					0	3		36
Percent Heavy Vehicles, %	0	0	0		0		0	0					0	0		0
Flow Rate (VPCE), pc/h	0	43	190		0		297	3					0	3		36
Right-Turn Bypass		No	ne			Non	е			No	ne			١	lone	
Conflicting Lanes			1			1									1	
Pedestrians Crossing, p/h 0															0	
Critical and Follow-U	р Неа	adway	, Adju	stment	t											
Approach	EB				WB			NB				SB				
Lane		Left	Right	Bypass	Left		Right	Bypass	Left	Right	Bypass	Let	t	Right	Bypass	
Critical Headway (s)				4.9763			4	4.9763							4.9763	
Follow-Up Headway (s)				2.6087			Ž	2.6087							2.6087	
Flow Computations,	Capac	ity ar	ıd v/c	Ratios												
Approach				EB				WB			NB				SB	
Lane			Left	Right	Bypass	Left		Right	Bypass	Left	Right	Bypass	Let	t	Right	Bypass
Entry Flow (v _e), pc/h				233.00			3	300.00							39.00	
Entry Volume veh/h				233.00			3	300.00							39.00	
Circulating Flow (v _c), pc/h				3				43			236				297	
Exiting Flow (vex), pc/h				193				333			46				0	
Capacity (c _{pce}), pc/h				1375.78			1	320.78							1019.33	
Capacity (c), veh/h				1375.78			1	320.78							1019.33	
v/c Ratio (x)	0.17				0.23							0.04				
Delay and Level of Se	rvice															
Approach				EB				WB			NB				SB	
Lane			Left	Bypass	Left		Right	Bypass	Left	Right	Bypass	Let	t	Right	Bypass	
Lane Control Delay (d), s/veh							4.7							3.9		
Lane LOS				Α				Α							Α	
95% Queue, veh	0.6							0.9							0.1	
Approach Delay, s/veh				4.0				4.7							3.9	
Approach LOS				А				Α							Α	
Intersection Delay, s/veh LOS	4.3							A								

HCS7 Signalized Intersection Results Summary Intersection Information **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date Sep 26, 2018 Area Type Other PM Peak Hour PHF 0.95 Jurisdiction Thompson's Station, TN Time Period Urban Street Thompson's Station Road Analysis Year 2020 (Back) **Analysis Period** 1> 7:00 6_bgpm.xus Intersection Thompson's Sta and Bu... File Name **Project Description** 10886 WB **Demand Information** EB NB SB Approach Movement L R L R L R L R 295 Demand (v), veh/h 64 179 35 126 0 167 **Signal Information** Cycle, s 50.0 Reference Phase 2 Offset, s 0 Reference Point End Green 26.9 0.0 0.0 0.0 11.1 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 0.0 On Red 2.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 2 6 8 Case Number 8.0 8.0 12.0 Phase Duration, s 32.9 32.9 17.1 Change Period, (Y+Rc), s 6.0 6.0 6.0 Max Allow Headway (MAH), s 0.0 0.0 3.2 Queue Clearance Time (g_s), s 10.7 Green Extension Time (g_e), s 0.0 0.0 0.6 Phase Call Probability 0.99 0.00 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R Т R L Т R L Т R L **Assigned Movement** 2 12 1 6 3 8 18 Adjusted Flow Rate (v), veh/h 256 347 308 1678 1024 1690 Adjusted Saturation Flow Rate (s), veh/h/ln 4.2 10.7 8.7 Queue Service Time (g_s), s Cycle Queue Clearance Time (g c), s 4.2 14.8 8.7 0.54 0.54 Green Ratio (g/C) 0.22 687 Capacity (c), veh/h 902 376 Volume-to-Capacity Ratio (X) 0.284 0.505 0.821 Back of Queue (Q), ft/ln (95 th percentile) 51.1 114.3 134.9 Back of Queue (Q), veh/ln (95 th percentile) 2.0 4.6 5.4 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 10.1 Uniform Delay (d 1), s/veh 6.3 18.5 Incremental Delay (d 2), s/veh 8.0 2.6 1.7 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 Control Delay (d), s/veh 7.1 12.8 20.2 Level of Service (LOS) Α В С 7.1 12.8 В 20.2 С 0.0 Approach Delay, s/veh / LOS Α Intersection Delay, s/veh / LOS 13.7 В **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.35 1.35 1.71 1.71 Α Α В В Bicycle LOS Score / LOS 0.91 Α 1.06 Α 1.00 Α

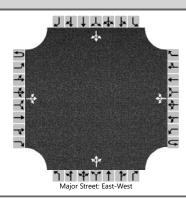
	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Thompson's St and Clayton
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Thompson's Sta Road
Analysis Year	2020	North/South Street	Clayton Arnold Road
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Back)		

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		LT						TR						L		R
Volume (veh/h)		17	71				72	89						172		91
Percent Heavy Vehicles (%)		0												0		0
Proportion Time Blocked																
Percent Grade (%)														()	
Right Turn Channelized														Ν	lo	
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30
Delay, Queue Length, and	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		18												185		98
Capacity, c (veh/h)		1416												744		931
v/c Ratio		0.01												0.25		0.11
95% Queue Length, Q ₉₅ (veh)		0.0												1.0		0.4
Control Delay (s/veh)		7.6												11.4		9.3
Level of Service (LOS)	A													В		А
Approach Delay (s/veh)	1.5												1().7		
Approach LOS													ı	3		

HCS7 Signalized Intersection Results Summary Intersection Information 144444 **General Information** Agency FTG Duration, h 0.25 FTG 12/21/2014 Analyst Analysis Date Area Type Other PM Peak Hour PHF 0.97 Jurisdiction Thompson's Station, TN Time Period Urban Street Columbia Pike Analysis Year 2020 (Back) **Analysis Period** 1> 7:00 8_bgpm.xus Columbia Pk and Thom... File Name Intersection **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 64 84 43 36 62 306 Demand (v), veh/h 17 13 32 257 13 6 **Signal Information** JI., Cycle, s 70.0 Reference Phase 2 Offset, s 0 Reference Point End 1.7 5.8 Green 1.4 1.5 32.5 3.2 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 4.0 4.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 0.0 2.0 2.0 0.0 2.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 4 3 8 2 6 7 5 1 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 7.7 11.8 10.9 15.0 8.8 39.9 7.4 38.5 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 3.2 3.1 3.2 3.1 0.0 3.1 0.0 Queue Clearance Time (g_s), s 2.6 5.2 5.0 5.0 2.6 2.3 Green Extension Time (g_e), s 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 Phase Call Probability 0.29 0.97 0.81 0.99 0.47 0.23 0.06 1.00 1.00 0.04 0.00 0.00 Max Out Probability **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 7 4 14 3 8 18 5 2 12 1 6 16 33 Adjusted Flow Rate (v), veh/h 18 79 87 81 329 13 322 1810 1653 1810 1756 1810 1836 1810 1893 Adjusted Saturation Flow Rate (s), veh/h/ln 0.6 3.2 3.0 3.0 0.6 7.9 0.3 7.7 Queue Service Time (g_s), s Cycle Queue Clearance Time (q c), s 0.6 3.2 3.0 3.0 0.6 7.9 0.3 7.7 0.11 Green Ratio (g/C) 0.08 0.15 0.13 0.50 0.48 0.48 0.46 Capacity (c), veh/h 224 137 278 225 557 890 505 878 Volume-to-Capacity Ratio (X) 0.078 0.578 0.311 0.362 0.059 0.370 0.027 0.366 Back of Queue (Q), ft/ln (95 th percentile) 11.4 57.6 55.4 54.3 9.9 137.7 4.2 140.8 Back of Queue (Q), veh/ln (95 th percentile) 0.5 2.3 2.2 2.2 0.4 5.5 0.2 5.6 Queue Storage Ratio (RQ) (95 th percentile) 0.13 0.41 0.55 0.34 0.06 0.28 0.03 0.28 Uniform Delay (d 1), s/veh 28.2 30.9 26.5 27.9 9.2 11.3 9.9 12.1 Incremental Delay (d 2), s/veh 0.1 1.4 0.2 0.4 0.0 1.2 0.0 1.2 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 28.2 32.3 26.7 28.3 9.2 12.5 9.9 13.3 Level of Service (LOS) С С С С Α В Α В 31.6 С 27.5 С 12.2 13.2 Approach Delay, s/veh / LOS В В Intersection Delay, s/veh / LOS 17.2 В **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.93 В 1.93 В 1.89 1.89 В В Bicycle LOS Score / LOS 0.65 Α 0.76 Α 1.08 Α 1.04 Α

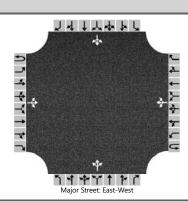
HCS7 Signalized Intersection Results Summary Intersection Information 144444 **General Information** Agency FTG Duration, h 0.25 FTG 12/21/2014 Analyst Analysis Date Area Type Other PM Peak Hour PHF 0.97 Jurisdiction Thompson's Station, TN Time Period Urban Street Columbia Pike Analysis Year 2020 (Back) **Analysis Period** 1> 7:00 Columbia Pk and Thom... File Name 8 bgpm imp.xus Intersection **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 64 84 43 36 62 306 Demand (v), veh/h 17 13 32 257 13 6 **Signal Information** JI., Cycle, s 60.0 Reference Phase 2 PAT T Offset, s 0 Reference Point End 5.7 1.5 Green 1.2 1.3 23.2 3.1 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 4.0 4.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 0.0 2.0 2.0 0.0 2.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 4 3 8 2 6 7 5 1 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 7.5 11.7 10.6 14.8 8.5 30.5 7.2 29.2 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 3.2 3.1 3.2 3.1 0.0 3.1 0.0 Queue Clearance Time (g_s), s 2.5 4.7 4.5 4.5 2.6 2.3 Green Extension Time (g_e), s 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.0 Phase Call Probability 0.25 0.95 0.76 0.98 0.42 0.20 0.01 0.22 1.00 0.00 0.00 Max Out Probability 0.01 SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 7 4 14 3 8 18 5 2 12 1 6 16 Adjusted Flow Rate (v), veh/h 18 79 87 81 33 168 161 13 161 161 Adjusted Saturation Flow Rate (s), veh/h/ln 1810 1653 1810 1756 1810 1900 1773 1810 1900 1887 0.5 2.7 2.5 2.5 0.6 3.4 3.5 0.3 3.4 3.4 Queue Service Time (g_s), s Cycle Queue Clearance Time (q c), s 0.5 2.7 2.5 2.5 0.6 3.4 3.5 0.3 3.4 3.4 0.39 Green Ratio (g/C) 0.12 0.09 0.17 0.15 0.43 0.41 0.41 0.41 0.39 494 Capacity (c), veh/h 261 157 324 256 550 777 725 734 729 Volume-to-Capacity Ratio (X) 0.067 0.506 0.267 0.318 0.060 0.216 0.222 0.027 0.219 0.220 Back of Queue (Q), ft/ln (95 th percentile) 9.3 46.8 44.4 43.6 9.8 61.9 60.2 4.1 62.7 62.5 Back of Queue (Q), veh/ln (95 th percentile) 0.4 1.9 1.8 1.7 0.4 2.5 2.4 0.2 2.5 2.5 Queue Storage Ratio (RQ) (95 th percentile) 0.10 0.33 0.44 0.27 0.06 0.12 0.12 0.03 0.13 0.13 Uniform Delay (d 1), s/veh 23.5 25.8 21.7 22.9 10.1 11.5 11.5 10.8 12.3 12.3 Incremental Delay (d 2), s/veh 0.0 0.9 0.2 0.3 0.0 0.6 0.7 0.0 0.7 0.7 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 23.5 26.8 21.9 23.2 10.1 12.1 12.2 10.8 13.0 13.0 Level of Service (LOS) С С С С В В В В В В 26.2 С 22.5 С 12.0 В 12.9 В Approach Delay, s/veh / LOS Intersection Delay, s/veh / LOS 15.6 В **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.29 В 2.28 В 1.89 1.89 В В Bicycle LOS Score / LOS 0.65 Α 0.76 Α 0.79 Α 0.76 Α

TOTAL PROJECTED WEEKDAY CONDITIONS


HCS7 Signalized Intersection Results Summary Intersection Information 7474777 **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date 12/21/2014 Area Type Other PHF 0.94 Jurisdiction Thompson's Station, TN Time Period AM Peak Hour Urban Street Columbia Pike Analysis Year 2020 (Total) **Analysis Period** 1> 7:00 Intersection Columbia Pk and Critz L... File Name 1 fuam.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R R L R Demand (v), veh/h 62 971 1729 22 257 1137 **Signal Information** Cycle, s 90.0 Reference Phase 2 Offset, s 0 Reference Point End Green 11.7 37.3 0.0 23.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 2.0 2.0 0.0 On Red 0.0 0.0 **Timer Results EBL** EBT **WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 8 2 1 6 Case Number 9.0 8.3 1.0 4.0 Phase Duration, s 29.0 43.3 17.7 61.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.4 0.0 3.1 0.0 Queue Clearance Time (g_s), s 25.0 11.3 Green Extension Time (g_e), s 0.0 0.0 0.4 0.0 Phase Call Probability 1.00 1.00 1.00 0.00 Max Out Probability SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 3 18 2 12 1 6 Adjusted Flow Rate (v), veh/h 66 1033 932 931 273 1210 1810 1610 1900 1891 1810 1809 Adjusted Saturation Flow Rate (s), veh/h/ln 2.5 23.0 64.7 37.3 9.3 17.6 Queue Service Time (g_s), s Cycle Queue Clearance Time (g c), s 2.5 23.0 64.7 37.3 9.3 17.6 Green Ratio (g/C) 0.26 0.39 0.41 0.41 0.57 0.61 Capacity (c), veh/h 462 620 788 784 315 2211 Volume-to-Capacity Ratio (X) 0.143 1.665 1.183 1.187 0.868 0.547 Back of Queue (Q), ft/ln (95 th percentile) 48 2475. 1294. 1305 247.2 260.3 4 3 Back of Queue (Q), veh/ln (95 th percentile) 1.9 99.0 51.8 52.2 9.9 10.4 Queue Storage Ratio (RQ) (95 th percentile) 0.48 15.47 2.59 2.61 1.54 0.52 Uniform Delay (d 1), s/veh 25.9 26.3 27.7 26.3 25.3 10.2 Incremental Delay (d 2), s/veh 0.1 306.2 95.0 96.9 2.9 1.0 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 25.9 11.2 Control Delay (d), s/veh 333.9 121.3 123.2 28.2 Level of Service (LOS) С F F С В Approach Delay, s/veh / LOS 0.0 315.4 F 122.3 F 14.3 В Intersection Delay, s/veh / LOS 134.0 **Multimodal Results** FB WB NB SB Pedestrian LOS Score / LOS 2.15 В 2.32 В 1.91 В 0.68 Α Bicycle LOS Score / LOS 2.02 В 1.71

HCS7 Signalized Intersection Results Summary Intersection Information 747477 **General Information** Agency FTG Duration, h 0.25 FTG 12/21/2014 Analyst Analysis Date Area Type Other PM Peak Hour PHF 0.98 Jurisdiction Thompson's Station, TN Time Period Urban Street Columbia Pike Analysis Year 2020 (Total) **Analysis Period** 1> 7:00 Intersection Columbia Pk and Critz L... File Name 1 fupm.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R R 1024 Demand (v), veh/h 36 484 1791 102 2107 **Signal Information** 160 Cycle, s 90.0 Reference Phase 2 Offset, s 0 Reference Point End Green 13.0 47.0 0.0 12.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 2.0 2.0 0.0 On Red 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 8 2 1 6 Case Number 9.0 8.3 1.0 4.0 Phase Duration, s 18.0 53.0 19.0 72.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.4 0.0 3.1 0.0 Queue Clearance Time (g_s), s 14.0 15.0 Green Extension Time (g_e), s 0.0 0.0 0.0 0.0 Phase Call Probability 1.00 1.00 1.00 1.00 Max Out Probability SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 3 18 2 12 1 6 Adjusted Flow Rate (v), veh/h 37 494 966 966 1045 2150 1810 1610 1900 1864 1810 1809 Adjusted Saturation Flow Rate (s), veh/h/ln 1.6 12.0 45.3 46.2 13.0 35.2 Queue Service Time (g_s), s Cycle Queue Clearance Time (g c), s 1.6 12.0 45.3 46.2 13.0 35.2 0.28 Green Ratio (g/C) 0.13 0.52 0.52 0.69 0.73 447 Capacity (c), veh/h 241 992 973 343 2653 Volume-to-Capacity Ratio (X) 0.152 1.104 0.974 0.992 3.043 0.810 Back of Queue (Q), ft/ln (95 th percentile) 31.6 666.9 790.4 829.1 3501.5 393.5 Back of Queue (Q), veh/ln (95 th percentile) 1.3 26.7 31.6 33.2 140.1 15.7 Queue Storage Ratio (RQ) (95 th percentile) 0.32 4.17 1.58 1.66 21.88 0.79 32.5 20.9 Uniform Delay (d 1), s/veh 34.5 21.3 30.3 7.9 Incremental Delay (d 2), s/veh 0.1 73.9 22.9 27.0 927.0 2.8 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 34.6 106.4 43.8 48.3 957.2 10.7 Level of Service (LOS) С F D D В 0.0 F 46.0 D 320.3 Approach Delay, s/veh / LOS 101.5 Intersection Delay, s/veh / LOS 206.1 **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.15 В 2.32 В 1.89 0.65 В Α Bicycle LOS Score / LOS 2.08 В 3.12

HCS7 Signalized Intersection Results Summary Intersection Information 747477 **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date 12/21/2014 Area Type Other PHF 0.94 Jurisdiction Thompson's Station, TN Time Period AM Peak Hour Urban Street Columbia Pike Analysis Year 2020 (Total) **Analysis Period** 1> 7:00 Intersection Columbia Pk and Critz L... File Name 1 fuam imp.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R Demand (v), veh/h 62 971 1729 22 257 1137 **Signal Information** 16 Cycle, s 100.0 Reference Phase 2 Offset, s 0 Reference Point End Green 13.3 51.7 0.0 17.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 2.0 2.0 0.0 On Red 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 8 2 1 6 Case Number 9.0 8.3 1.0 4.0 Phase Duration, s 23.0 57.7 19.3 77.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.4 0.0 3.1 0.0 Queue Clearance Time (g_s), s 19.0 12.8 Green Extension Time (g_e), s 0.0 0.0 0.5 0.0 Phase Call Probability 1.00 1.00 1.00 0.00 Max Out Probability SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 3 18 2 12 1 6 Adjusted Flow Rate (v), veh/h 66 1033 932 931 273 1210 1810 1425 1900 1891 1810 1809 Adjusted Saturation Flow Rate (s), veh/h/ln 3.1 17.0 86.9 46.8 10.8 14.6 Queue Service Time (g_s), s 46.8 Cycle Queue Clearance Time (g_c), s 3.1 17.0 86.9 10.8 14.6 0.30 0.71 Green Ratio (g/C) 0.17 0.52 0.52 0.67 862 Capacity (c), veh/h 308 983 979 312 2568 Volume-to-Capacity Ratio (X) 0.214 1.198 0.948 0.951 0.876 0.471 Back of Queue (Q), ft/ln (95 th percentile) 61.9 811.8 798.3 803.6 272.7 206.6 Back of Queue (Q), veh/ln (95 th percentile) 2.5 32.5 31.9 32.1 10.9 8.3 Queue Storage Ratio (RQ) (95 th percentile) 0.62 5.07 1.60 1.61 1.70 0.41 22.9 Uniform Delay (d 1), s/veh 35.7 34.9 22.9 32.2 6.3 Incremental Delay (d 2), s/veh 0.1 100.2 18.6 19.2 3.1 0.6 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 35.9 135.1 41.4 42.1 35.3 6.9 Level of Service (LOS) D F D D D Α 0.0 129.1 F 41.8 D 12.2 Approach Delay, s/veh / LOS В Intersection Delay, s/veh / LOS 53.5 D **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.15 В 2.32 В 2.09 0.66 В Α Bicycle LOS Score / LOS 2.02 В 1.71


HCS7 Signalized Intersection Results Summary Intersection Information 747477 **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date 12/21/2014 Area Type Other PHF 0.98 Jurisdiction Thompson's Station, TN Time Period PM Peak Hour Urban Street Columbia Pike Analysis Year 2020 (Total) **Analysis Period** 1> 7:00 Intersection Columbia Pk and Critz L... File Name 1 fupm imp.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R R 1024 Demand (v), veh/h 36 484 1791 102 2107 **Signal Information** Cycle, s 90.0 Reference Phase 2 Offset, s 0 Reference Point End Green 21.7 36.0 0.0 14.3 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 2.0 2.0 0.0 On Red 0.0 0.0 **Timer Results EBL** EBT **WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 8 2 1 6 Case Number 9.0 8.3 1.0 4.0 Phase Duration, s 20.3 42.0 27.7 69.7 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.4 0.0 3.1 0.0 Queue Clearance Time (g_s), s 13.3 23.7 Green Extension Time (g_e), s 0.9 0.0 0.0 0.0 Phase Call Probability 1.00 1.00 1.00 Max Out Probability 0.15 SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 3 18 2 12 1 6 Adjusted Flow Rate (v), veh/h 37 494 966 966 1045 2150 1810 1425 1900 1864 1810 Adjusted Saturation Flow Rate (s), veh/h/ln 1809 1.6 11.3 56.9 36.0 21.7 38.5 Queue Service Time (g_s), s Cycle Queue Clearance Time (g_c), s 1.6 11.3 56.9 36.0 21.7 38.5 0.40 Green Ratio (g/C) 0.16 0.40 0.40 0.66 0.71 Capacity (c), veh/h 287 1139 761 746 516 2561 Volume-to-Capacity Ratio (X) 0.128 0.434 1.270 1.294 2.024 0.839 Back of Queue (Q), ft/ln (95 th percentile) 30.5 160.4 1565. 1624. 3020 453 1 6 Back of Queue (Q), veh/ln (95 th percentile) 62.6 1.2 6.4 65.0 120.8 18.1 Queue Storage Ratio (RQ) (95 th percentile) 0.31 1.00 3.13 3.25 18.87 0.91 Uniform Delay (d 1), s/veh 27.0 32.5 19.6 27.0 27.8 9.5 Incremental Delay (d 2), s/veh 0.1 0.1 131.8 142.2 467.7 3.5 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 32.6 19.7 158.8 Control Delay (d), s/veh 169.2 495.5 13.0 Level of Service (LOS) С В F F В Approach Delay, s/veh / LOS 0.0 20.6 С 164.0 F 170.8 Intersection Delay, s/veh / LOS 154.4 **Multimodal Results** FB WB NB SB Pedestrian LOS Score / LOS 2.15 2.10 0.65 В 2.32 В В Α Bicycle LOS Score / LOS 2.08 В 3.12

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Critz and Clayton
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Critz Lane
Analysis Year	2020	North/South Street	Clayton Arnold/Paddock
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.86
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Total)		

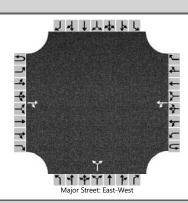
Vehicle Volumes and Adj	ustme	nts														
Approach	Ī	Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		4	93	97		90	183	19		436	19	29		4	32	31
Percent Heavy Vehicles (%)		0				0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (%))				0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up Ho	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.10				4.10				7.10	6.50	6.20		7.10	6.50	6.20
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		5				105					563				78	
Capacity, c (veh/h)		1344				1360					332				474	
v/c Ratio		0.00				0.08					1.69				0.16	
95% Queue Length, Q ₉₅ (veh)		0.0				0.2					34.9				0.6	
Control Delay (s/veh)		7.7				7.9					352.6				14.1	
Level of Service (LOS)	A					А					F				В	
Approach Delay (s/veh)	0.2					2	.9			35	2.6			14	1.1	
Approach LOS											F				В	

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Critz and Clayton
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Critz Lane
Analysis Year	2020	North/South Street	Clayton Arnold/Paddock
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Total)		



Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		7	91	444		101	168	30		98	21	25		5	28	15
Percent Heavy Vehicles (%)		0				0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (%)										()			(0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.10				4.10				7.10	6.50	6.20		7.10	6.50	6.20
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30
Delay, Queue Length, and	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		8				110					157				52	
Capacity, c (veh/h)		1367				1003					278				279	
v/c Ratio		0.01				0.11					0.56				0.19	
95% Queue Length, Q ₉₅ (veh)		0.0				0.4					3.2				0.7	
Control Delay (s/veh)		7.6				9.0					33.3				20.9	
Level of Service (LOS)	A					А					D				С	
Approach Delay (s/veh)	0.2				3	.8			33	3.3			20).9		
Approach LOS	5,2								[)			(С		

				HCS	7 Ro	unda	abo	uts R	lepor	t						
General Information							Site	e Info	matio	n						
Analyst	FTG						Inte	ersection			Critz an	d Clayto	n Arno	old		
Agency or Co.	FTG						E/W	V Street N	Name		Critz La	ne				
Date Performed	Sept 2	2018					N/S	Street N	lame		Clayton	Arnold	Road			
Analysis Year	2020						Ana	alysis Tim	e Period	(hrs)	0.25					
Time Analyzed	AM P	eak Hou	r				Pea	ık Hour F	actor		0.86					
Project Description	10886	(Total)					Juri	isdiction			Thomp	son's Sta	ition, T	ΓN		
Volume Adjustments	and S	Site C	haract	teristic	s											
Approach		E	B			V	√B		T	N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment			נז	TR .				LTR			LTR					LTR
Volume (V), veh/h	0	4	93	97	0	90	183	19	0	436	19	29	0	4	32	31
Percent Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Flow Rate (VPCE), pc/h	0	5	108	113	0	105	213	3 22	0	507	22	34	0	5	37	36
Right-Turn Bypass		No	one			No	one			No	ne			N	None	
Conflicting Lanes			1				1			,					1	
Pedestrians Crossing, p/h		(0			(0			()				0	
Critical and Follow-U	Јр Неа	adway	/ Adju	stmen	t											
Approach	\neg		EB		Т		WB			NB		Т		SB		
Lane			Left	Right	Bypas	s Le	eft	Right	Bypass	Left	Right	Bypas	s L	Left	Right	Bypass
Critical Headway (s)		\neg		4.9763		\top	\neg	4.9763			4.9763				4.9763	
Follow-Up Headway (s)				2.6087				2.6087			2.6087				2.6087	
Flow Computations,	Capac	ity ar	nd v/c	Ratios												
Approach				EB		Т		WB			NB		Т		SB	
Lane			Left	Right	Bypas	s Le	eft	Right	Bypass	Left	Right	Bypas	s L	Left	Right	Bypass
Entry Flow (v _e), pc/h				226.00				340.00			563.00				78.00	
Entry Volume veh/h				226.00				340.00			563.00				78.00	
Circulating Flow (v _c), pc/h				147				534			118				825	
Exiting Flow (vex), pc/h				147				756			49				255	
Capacity (c _{pce}), pc/h				1187.85				800.44			1223.51				594.87	
Capacity (c), veh/h				1187.85				800.44			1223.51				594.87	
v/c Ratio (x) 0.								0.42			0.46				0.13	
Delay and Level of S	ervice															
Approach				EB				WB			NB				SB	
Lane			Left	Right	Bypas	s Le	eft	Right	Bypass	Left	Right	Bypas	s L	Left	Right	Bypass
Lane Control Delay (d), s/veh				4.7			П	9.9			7.7				7.6	
Lane LOS				А				Α			А				А	
95% Queue, veh				0.7				2.1			2.5				0.4	
Approach Delay, s/veh			4.7					9.9			7.7				7.6	
Approach LOS				А				Α			Α				Α	
Intersection Delay, s/veh LO	ntersection Delay, s/veh LOS					7.8							Α			
opyright © 2018 University of	Elorida /	All Diabt	. Docomic	v d		I C STANI I	Pound	aboute V	ersion 7 6				oporat	tod: 0/2	6/2010 7	'·07·14 PM

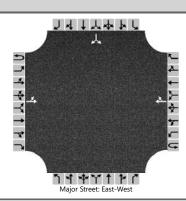

				HCS ⁻	7 Roı	ındal	οοι	uts R	epor	t						
General Information						9	Site	Infor	matio	n						
Analyst	FTG						Inter	section			Critz an	d Clayto	n Arno	ld		
Agency or Co.	FTG						E/W	Street N	lame		Critz La	ne				
Date Performed	Sept 2	2018					N/S S	Street N	ame		Clayton	Arnold F	Road			
Analysis Year	2020						Analy	ysis Tim	e Period	(hrs)	0.25					
Time Analyzed	PM Pe	eak Houi	r				Peak	Hour Fa	actor		0.92					
Project Description	10886	(Total)					Juriso	diction			Thomp	son's Stat	ion, Ti	N		
Volume Adjustments	and S	Site C	haract	teristic	s											
Approach		E	В			WB				N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment			Lī	ΓR			L	LTR			LTR					LTR
Volume (V), veh/h	0	7	91	444	0	101	168	30	0	98	21	25	0	5	28	15
Percent Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Flow Rate (VPCE), pc/h	0	8	99	483	0	110	183	33	0	107	23	27	0	5	30	16
Right-Turn Bypass		No	one			None	9			No	ne			١	None	
Conflicting Lanes			1			1				1					1	
Pedestrians Crossing, p/h 0										C)				0	
Critical and Follow-U	р Неа	adway	/ Adju	stment	t											
Approach EB								WB			NB				SB	
Lane			Left	Right	Bypass	Left	1	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Bypass
Critical Headway (s)				4.9763			4	1.9763			4.9763				4.9763	
Follow-Up Headway (s)				2.6087			2	2.6087			2.6087				2.6087	
Flow Computations,	Capac	ity ar	nd v/c	Ratios												
Approach				EB				WB			NB				SB	
Lane			Left	Right	Bypass	Left	ı	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Bypass
Entry Flow (v _e), pc/h		\Box		590.00			3	326.00			157.00				51.00	
Entry Volume veh/h				590.00			3	326.00			157.00				51.00	
Circulating Flow (v _c), pc/h				145				138			112				400	
Exiting Flow (vex), pc/h				131				306			64				623	
Capacity (c _{pce}), pc/h				1190.27			1	198.80			1231.02				917.67	
Capacity (c), veh/h				1190.27			1	198.80			1231.02				917.67	
v/c Ratio (x)	0.50				0.27			0.13				0.06				
Delay and Level of Se	rvice															
Approach				EB				WB			NB				SB	
Lane			Left	Right	Bypass	Left	ı	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Bypass
Lane Control Delay (d), s/veh				8.4				5.5			4.0				4.4	
Lane LOS				А				Α			А				Α	
95% Queue, veh				2.8				1.1			0.4				0.2	
Approach Delay, s/veh	Delay, s/veh 8.4							5.5			4.0				4.4	
Approach LOS				Α				Α			Α				Α	
Intersection Delay, s/veh LOS	6.8							A								

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	FTG	Intersection	Critz and Pantall									
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN									
Date Performed	Sept 2018	East/West Street	Critz Lane									
Analysis Year	2020	North/South Street	Pantall Road									
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.87									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	10886 (Total)											

Approach		Eastb	ound			Westk	ound			North	oound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0		
Configuration				TR		LT					LR							
Volume (veh/h)			95	85		124	157			98		210						
Percent Heavy Vehicles (%)						0				0		0						
Proportion Time Blocked																		
Percent Grade (%)										()							
Right Turn Channelized																		
Median Type Storage				Undi	vided													
Critical and Follow-up Ho	eadwa	ys																
Base Critical Headway (sec)						4.1				7.1		6.2						
Critical Headway (sec)						4.10				6.40		6.20						
Base Follow-Up Headway (sec)						2.2				3.5		3.3						
Follow-Up Headway (sec)						2.20				3.50		3.30						
Delay, Queue Length, an	d Leve	l of S	ervice															
Flow Rate, v (veh/h)						143					354							
Capacity, c (veh/h)						1376					642							
v/c Ratio						0.10					0.55							
95% Queue Length, Q ₉₅ (veh)						0.3					3.4							
Control Delay (s/veh)						7.9					17.3							
Level of Service (LOS)						А					С							
Approach Delay (s/veh)						4	.0			17	'.3							
Approach LOS										(

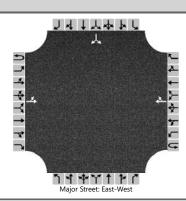
HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	FTG	Intersection	Critz and Pantall									
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN									
Date Performed	Sept 2018	East/West Street	Critz Lane									
Analysis Year	2020	North/South Street	Pantall Road									
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.95									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	10886 (Total)											

Vehicle Volumes and Adj	ustme	nts																
Approach		Eastb	ound			Westl	oound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0		
Configuration				TR		LT					LR							
Volume (veh/h)			84	142		547	221			116		184						
Percent Heavy Vehicles (%)						0				0		0						
Proportion Time Blocked																		
Percent Grade (%)										()							
Right Turn Channelized																		
Median Type Storage				Undi	vided													
Critical and Follow-up He	eadwa	ys																
Base Critical Headway (sec)						4.1				7.1		6.2						
Critical Headway (sec)						4.10				6.40		6.20						
Base Follow-Up Headway (sec)						2.2				3.5		3.3						
Follow-Up Headway (sec)						2.20				3.50		3.30						
Delay, Queue Length, and	d Leve	l of S	ervice															
Flow Rate, v (veh/h)						576					316							
Capacity, c (veh/h)						1341					149							
v/c Ratio						0.43					2.11							
95% Queue Length, Q ₉₅ (veh)						2.2					25.5							
Control Delay (s/veh)						9.7					572.8							
Level of Service (LOS)						А					F							
Approach Delay (s/veh)						8	.3			57	2.8							
Approach LOS											F							


HCS7 Roundabouts Report																				
General Information							Site Information													
Analyst	FTG						Inte	ersection				Critz and Pantall								
Agency or Co.	FTG						E/V	V Street I	Name			Critz Lane								
Date Performed	Sept 2	2018					N/S	S Street N	lame			Pantall Lane								
Analysis Year	2020						Ana	alysis Tim	e Perio	d (h	nrs)	0.25								
Time Analyzed	AM Pe	eak Hou	r				Pea	ak Hour F	actor			0.88								
Project Description	10886	(Total)					Juri	isdiction				Thompson's Station, TN								
Volume Adjustments	and S	Site C	haracteristics																	
Approach	EB W										NI	3				SB				
Movement	U	L	Т	R	U	L	Т	R	U		L	Т	R	U	L	Т	R			
Number of Lanes (N)	0	0	1	0	0	0	1	0	0		0	1	0	0	0	0	0			
Lane Assignment			Т	R				LT				LR								
Volume (V), veh/h	0		95	85	0	124	157	7	0		98		210							
Percent Heavy Vehicles, %	0		0	0	0	0	0		0		0		0							
Flow Rate (VPCE), pc/h	0		108	97	0	141	178	3	0		111		239							
Right-Turn Bypass		No	one			No	ne				Noi	ne		None						
Conflicting Lanes	1						1													
Pedestrians Crossing, p/h	0)				0									
Critical and Follow-U	р Неа	adway	/ Adju	stmen	t															
Approach				EB	WB					NB		SB								
Lane			Left	Right	Bypass		eft Right		Bypas	ss	Left	Right Bypa		5 L	Left	Right	Bypass			
Critical Headway (s)				4.9763	$\overline{}$			4.9763		7		4.9763								
Follow-Up Headway (s)				2.6087				2.6087				2.6087								
Flow Computations,	Capac	ity ar	nd v/c	Ratios																
Approach		\neg		EB				WB		Т	NB				SB					
Lane			Left	Right	Bypass	s Le	eft Right		Bypas	ss	Left	Right	Right Bypass		Left	Right	Bypass			
Entry Flow (v _e), pc/h				205.00				319.00		7		350.00	$\overline{}$							
Entry Volume veh/h				205.00				319.00				350.00								
Circulating Flow (v₀), pc/h		\Box		141				111		T		108		430						
Exiting Flow (vex), pc/h				347				289				0				238				
Capacity (c _{pce}), pc/h				1195.14				1232.28				1236.05		Т						
Capacity (c), veh/h				1195.14				1232.28				1236.05								
v/c Ratio (x)				0.17				0.26				0.28		Т						
Delay and Level of Se	ervice																			
Approach EB								WB		Т		NB		Τ	SB					
Lane			Left	Right	Bypass	s Le	eft	Right	Bypas	SS	Left	Right	Bypas	s L	Left	Right	Bypass			
Lane Control Delay (d), s/veh), s/veh			4.5				5.2				5.5								
Lane LOS				Α				Α				А								
95% Queue, veh				0.6				1.0				1.2								
Approach Delay, s/veh 4.				4.5				5.2				5.5								
Approach LOS				А				Α				Α								
Intersection Delay, s/veh LOS	5			5.2							А									

HCS7 Roundabouts Report																	
General Information							Site	e Info	rmat	tior	n						
Analyst	FTG						Inte	ersection				Critz ar	ıd Panta	I			
Agency or Co.	FTG						E/V	V Street I	Name			Critz La	ne				
Date Performed	Sept 2	2018					N/S	S Street N	lame			Pantall	Lane				
Analysis Year	2020						Ana	alysis Tim	ne Peri	od (l	hrs)	0.25					
Time Analyzed	PM Pe	eak Houi					Pea	ak Hour F	actor			0.92					
Project Description	10886	(Total)					Jur	isdiction				Thomp	son's Sta	tion,	TN		
Volume Adjustments	and S	Site C	haract	teristic	s												
Approach		E	В			V	√B		Т		N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	ι	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0 0			0	(0	0	1	0	0	0	0	0
Lane Assignment			Т	R				LT				LR					
Volume (V), veh/h	0		84	142	0	547	221	1	(0	116		184				
Percent Heavy Vehicles, %	0		0	0	0	0	0		(0	0		0				
Flow Rate (VPCE), pc/h	0		91	154	0	595	240)	(0	126		200				
Right-Turn Bypass		No	ne			No	one				No	ne				None	
Conflicting Lanes			1				1				1						
Pedestrians Crossing, p/h		()			(0				0						
Critical and Follow-Up Headway Adjustment																	
Approach EB								WB				NB		Т		SB	
Lane				Right	Bypas	s Le	eft	Right	Вура	ass	Left	Right	Bypas	s	Left	Right	Bypass
Critical Headway (s)				4.9763			一	4.9763				4.9763					
Follow-Up Headway (s)				2.6087				2.6087				2.6087					
Flow Computations,	Capac	ity ar	ıd v/c	Ratios	;									Ė			
Approach		\neg		EB		Т		WB				NB		Т		SB	
Lane			Left	Right	Bypas	s Le	eft	Right	Вура	ass	Left	Right	Bypas	s	Left	Right	Bypass
Entry Flow (v _e), pc/h				245.00			一	835.00				326.00					
Entry Volume veh/h				245.00				835.00				326.00					
Circulating Flow (v₀), pc/h		\Box		595				126				91				961	
Exiting Flow (vex), pc/h				291				366				0				749	
Capacity (c _{pce}), pc/h				752.16				1213.57				1257.67					
Capacity (c), veh/h				752.16				1213.57				1257.67					
v/c Ratio (x)				0.33				0.69				0.26					
Delay and Level of Se	ervice																
Approach EB								WB				NB		Т		SB	
Lane					s Le	eft	Right	Вура	ass	Left	Right	Bypas	s	Left	Right	Bypass	
Lane Control Delay (d), s/veh), s/veh 8.7					12.7				5.2							
Lane LOS	ane LOS A							В				А					
95% Queue, veh				1.4				5.9				1.0					
Approach Delay, s/veh				8.7				12.7				5.2					
Approach LOS	Approach LOS A							В				Α					
Intersection Delay, s/veh LOS	tersection Delay, s/veh LOS					10.2								В			

		HCS	7 Sig	nalize	d Int	ersec	tion R	esu	ılts	Sun	nmar	у				
General Informa	tion								Into	react	ion Inf	ormatic	\n		14741	Ja lj
	-	FTG								ation,		0.25	<i>)</i>	- 1	11	
Agency	_	FTG		Analyo	io Dot	e 12/21/	2014					Other				L.
Analyst Jurisdiction	\rightarrow		TNI	Analys Time F			ak Hou		PHE	а Туре)	0.94			w ^N ∈	<u>}</u>
	_	Thompson's Station	1, I IN					ſ			Dariad		20			-
Urban Street	_	Columbia Pike	-1	Analys			· ,		Ana	alysis i	Period	1> 7:0)0			
Intersection		Lewisburg and Critz	z Lane	File Na	ame	4_fuai	n.xus							_	<u></u>	1. 6
Project Description	on	10886													ነ ቀ ተቀጥ	r
Demand Informa	ation				EB		T	W	/B			NB		7	SB	
Approach Movem	nent			L	Т	R		T	гΤ	R	L	Т	R	L	Т	R
Demand (v), veh				366		16	+-	+			17	1462			200	226
Signal Information	on					7Ţ	2									
Cycle, s 1	50.0	Reference Phase	2		251	R∱	K							Y.		≺∵.
Offset, s	0	Reference Point	End	Green	6.0	102.0	26.0	0.0	n	0.0	0.0		1		3	Y 4
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0		0.0	0.0		< ₂	1 ∣⁴	- עב	
Force Mode F	ixed	Simult. Gap N/S	On	Red	0.0	2.0	2.0	0.0		0.0	0.0	1	5	6	7	8
Timer Results				EBL	-	EBT	WBI	-	WE	ВТ	NBI	-	NBT	SB		SBT
Assigned Phase					_	4		_		_	5		2	—	$-\!\!\!\!-$	6
Case Number						9.0		_		_	1.0	_	4.0	\vdash		7.3
Phase Duration, s						32.0		_		_	10.0	-	118.0	╄		108.0
Change Period, (·			_	6.0		_		_	4.0	_	6.0	\vdash		6.0
Max Allow Headw						3.1		_		_	3.1	_	0.0	ــــــ	$-\!$	0.0
Queue Clearance		, - ,				28.0		4		_	2.4	_		╄	-	
Green Extension	•	(<i>g</i> e), s				0.0		_		_	0.0	_	0.0	╄	$-\!$	0.0
Phase Call Proba						1.00		_			1.00)		\vdash		
Max Out Probabil	lity					1.00					0.36	5				
Movement Grou	n Resi	ulte			EB			WE	3			NB			SB	
Approach Movem	_	uito			T	R	L	T		R	ı	T	R		T	R
Assigned Movem				7	1	14	H		+	1	5	2	- 1	+-	6	16
Adjusted Flow Ra				389		17			-		18	1555		_	213	240
		w Rate (s), veh/h/li	n	1810		1610					1810	1900		_	1900	1610
Queue Service Ti				26.0		1.3			-	_	0.4	112.0		+	6.1	3.9
Cycle Queue Clea		· · · · · · · · · · · · · · · · · · ·		26.0		1.3			_		0.4	112.0		_	6.1	3.9
Green Ratio (g/C		, mile (g c), s		0.17		0.21					0.4	0.75		_	0.68	0.85
Capacity (c), vel				314		344					880	1419			1292	1374
Volume-to-Capac		tio (X)		1.241		0.050					0.021	1.096		_	0.165	0.175
		In (95 th percentile))	869.9		23.1					6.5	2077			114.5	42.6
·		eh/ln (95 th percenti		34.8		0.9					0.3	83.1		_	4.6	1.7
		RQ) (95 th percent		9.67		0.9					0.04	4.15			0.23	0.09
Uniform Delay (d				62.0		46.9					5.6	19.0		_	8.6	1.9
Incremental Delay				132.8		0.0					0.0	54.8			0.3	0.3
Initial Queue Dela	•	<i>'</i>		0.0		0.0					0.0	0.0			0.0	0.0
	Control Delay (d), s/veh					46.9					5.6	73.8			8.9	2.2
Level of Service (,	••		194.8 F		D					A	75.0 F			A	A
	pproach Delay, s/veh / LOS				â l	F	0.0				73.0		E	5.3		A
	tersection Delay, s/veh / LOS				_	79					70.0	,	_	E 5.5		71
microcollon Delay	Craccion Delay, 3/Ven/ 200					13										
Multimodal Resu	ultimodal Results				EB			WE	3			NB			SB	
	edestrian LOS Score / LOS				·	В	1.97	_	В	3	0.66		Α	1.88		В
reuesiliali LOS s	cycle LOS Score / LOS							_								


	HCS7 Signalized Intersection Results Summary											
General Information						Intorco	ction Inf	ormati	on	T D	4741	ja lj
					\rightarrow	Duratio		0.25	OII		11	
3 7	Analya	o Doto	12/21/2	2014				Othe	<u> </u>			- L
,				ak Hou		Area Ty PHF	/pe	0.99	ı		w 1 ∈)- A
Jurisdiction Thompson's Station, TN Urban Street Columbia Pike	Analys				_		o Doriod	1> 7:	00	_		į
						Analysi	s Period	177.	00	-		-
	e File Na	me	4_fupn	n.xus						_	া † বিশ্বস	1× C
Project Description 10886	_		_				_		_			
Demand Information	\neg	EB			WI	3	\neg	NB		7	SB	
Approach Movement	L	Т	R	L	Т		L	T	R	L	Т	R
Demand (v), veh/h	237		34	1			14	367		+-	1044	
Domana (v), voimi	201							001			1011	000
Signal Information			ŢŢ	2	Т							
Cycle, s 150.0 Reference Phase 2		2 CV	5.576	~						4		~
Offset, s 0 Reference Point En	d		<u></u>	9	100				1	2	3	Y 4
Uncoordinated No Simult. Gap E/W Or	Green Yellow		101.0 4.0	27.0 4.0	0.0			-	~ <i>/</i>	∤ ⊦	ړك	
Force Mode Fixed Simult. Gap N/S Or	TOHOW	0.0	2.0	2.0	0.0			一コ	. 5	→ 6	7	8
		0.0	12.0	1 - 0	10.0	10.0	10.0					
Timer Results	EBL		EBT	WBI		WBT	NB	L	NBT	SBI	_	SBT
Assigned Phase	-		4		\neg		5		2			6
Case Number			9.0				1.0		4.0			7.3
Phase Duration, s	_	_	33.0		\neg		10.0	_	117.0		-	107.0
Change Period, (Y+R c), s	1	_	6.0		\perp		4.0	_	6.0			6.0
Max Allow Headway (<i>MAH</i>), s	_	_	3.2		_		3.1	_	0.0			0.0
Queue Clearance Time (g s), s	_	_	20.8				2.3		0.0			0.0
Green Extension Time (g e), s	_	_	0.3		_		0.0	_	0.0			0.0
Phase Call Probability	_		1.00				1.00	_	0.0			0.0
Max Out Probability	_	_	0.07		_		0.2	_			_	
max out resulting			3.01				0.2					
Movement Group Results	\top	EB			WB		Т	NB			SB	
Approach Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Movement	7		14				5	2			6	16
Adjusted Flow Rate (v), veh/h	239		34				14	371			1055	702
Adjusted Saturation Flow Rate (s), veh/h/ln	1810		1610				1810	1900			1900	1610
Queue Service Time (g s), s	18.8		2.5				0.3	9.5			61.1	17.0
Cycle Queue Clearance Time (g c), s	18.8		2.5				0.3	9.5			61.1	17.0
Green Ratio (g/C)	0.18		0.22				0.73	0.74			0.67	0.85
Capacity (c), veh/h	326		354				265	1406			1279	1374
Volume-to-Capacity Ratio (X)	0.735		0.097				0.053	0.264			0.824	0.511
Back of Queue (Q), ft/ln (95 th percentile)	355.4		46.6				9.5	167.9	_		889.4	190.6
Back of Queue (Q), veh/ln (95 th percentile)	14.2		1.9				0.4	6.7			35.6	7.6
Queue Storage Ratio (RQ) (95 th percentile)	3.95		0.33				0.06	0.34			1.78	0.38
Uniform Delay (d 1), s/veh	58.1		46.6				19.3	6.3			18.0	2.9
Incremental Delay (d 2), s/veh	7.4		0.0				0.0	0.5			6.1	1.4
Initial Queue Delay (d 3), s/veh	0.0		0.0				0.0	0.0			0.0	0.0
Control Delay (d), s/veh	65.5		46.7				19.3	6.8			24.1	4.2
Level of Service (LOS)	E		D				В	A			C	A
Approach Delay, s/veh / LOS	63.2		E	0.0			7.2		Α	16.2		В
Intersection Delay, s/veh / LOS	55.2		20				1			C		
			20									
										11		
Multimodal Results		EB			WR			NB			SB	
Multimodal Results Pedestrian LOS Score / LOS	1.97	EB	В	1.97	WB	В	0.60	NB	A	1.88	SB	В

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	FTG	Intersection	Thompson's St and Pantall								
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN								
Date Performed	Sept 2018	East/West Street	Thompson's Sta Road								
Analysis Year	2020	North/South Street	Pantall Road								
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.82								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	10886 (Total)										

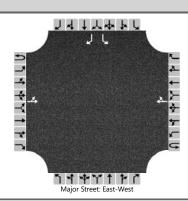
Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		244	311				285	66						94		147
Percent Heavy Vehicles (%)		0												0		0
Proportion Time Blocked																
Percent Grade (%)															0	
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		298													294	
Capacity, c (veh/h)		1142													225	
v/c Ratio		0.26													1.31	
95% Queue Length, Q ₉₅ (veh)		1.0													15.7	
Control Delay (s/veh)		9.3													209.8	
Level of Service (LOS)		А													F	
Approach Delay (s/veh)		5.8												20	9.8	
Approach LOS															F	

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	FTG	Intersection	Thompson's St and Pantall								
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN								
Date Performed	Sept 2018	East/West Street	Thompson's Sta Road								
Analysis Year	2020	North/South Street	Pantall Road								
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.93								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	10886 (Total)										

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		189	300				352	103						96		567
Percent Heavy Vehicles (%)		0												0		0
Proportion Time Blocked																
Percent Grade (%)														()	
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up H	eadwa	dways														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		203													713	
Capacity, c (veh/h)		1084													449	
v/c Ratio		0.19													1.59	
95% Queue Length, Q ₉₅ (veh)		0.7													39.8	
Control Delay (s/veh)		9.1													298.3	
Level of Service (LOS)		A													F	
Approach Delay (s/veh)		4.8												29	8.3	
Approach LOS														F		

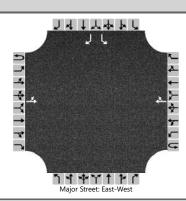
HCS7 Signalized Intersection Results Summary Intersection Information 144444 **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date Jan 17, 2018 Area Type Other PHF 0.82 Jurisdiction Thompson's Station Road Time Period AM Peak Hour Urban Street Thompson's Station Road Analysis Year 2020 (Total) **Analysis Period** 1> 7:00 Intersection Thompson's Sta and Pa... File Name 5 fuam sig.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement R L R L R R 311 66 0 Demand (v), veh/h 244 285 94 147 **Signal Information** Cycle, s 60.0 Reference Phase 2 Offset, s 0 Reference Point End Green 8.0 21.7 12.4 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 2.0 0.0 On Red 2.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 4 Case Number 1.0 4.0 8.3 12.0 Phase Duration, s 14.0 41.6 27.7 18.4 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 0.0 3.3 Queue Clearance Time (g_s), s 7.6 12.1 Green Extension Time (g_e), s 0.4 0.0 0.0 0.4 Phase Call Probability 0.99 0.99 0.00 0.03 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R Т L R **Assigned Movement** 5 2 6 16 7 4 14 Adjusted Flow Rate (v), veh/h 298 379 428 294 1810 1900 1838 1682 Adjusted Saturation Flow Rate (s), veh/h/ln 5.6 11.6 Queue Service Time (g_s), s 6.1 10.1 Cycle Queue Clearance Time (g_c), s 5.6 6.1 11.6 10.1 0.36 Green Ratio (g/C) 0.53 0.59 0.21 Capacity (c), veh/h 522 1128 663 347 Volume-to-Capacity Ratio (X) 0.570 0.336 0.645 0.846 Back of Queue (Q), ft/ln (95 th percentile) 78.3 89.1 219.8 177 Back of Queue (Q), veh/ln (95 th percentile) 3.1 3.6 8.8 7.1 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 0.00 16.0 Uniform Delay (d 1), s/veh 10.3 6.2 22.9 4.8 Incremental Delay (d 2), s/veh 0.4 8.0 3.4 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 10.6 7.0 20.8 26.3 Level of Service (LOS) В Α С С 8.6 20.8 С 0.0 26.3 С Approach Delay, s/veh / LOS Α Intersection Delay, s/veh / LOS 16.0 В **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.34 1.67 В 1.71 В 1.94 Α В Bicycle LOS Score / LOS 1.60 В 1.19 Α 0.97 Α

HCS7 Signalized Intersection Results Summary 144444 Intersection Information **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date Jan 17, 2018 Area Type Other PM Peak Hour PHF 0.93 Jurisdiction Thompson's Station Road Time Period Urban Street Thompson's Station Road Analysis Year 2020 (Total) **Analysis Period** 1> 7:00 Intersection Thompson's Sta and Pa... File Name 5 fupm sig.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R R 300 0 Demand (v), veh/h 189 352 103 96 567 <u>- 111</u> **Signal Information** Cycle, s 130.0 Reference Phase 2 Offset, s 0 Reference Point End Green 11.8 58.9 0.0 0.0 0.0 41.3 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 2.0 0.0 On Red 2.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 4 Case Number 1.0 4.0 8.3 12.0 Phase Duration, s 17.8 65.1 47.3 64.9 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 0.0 0.0 3.3 Queue Clearance Time (g_s), s 11.5 56.9 Green Extension Time (g_e), s 0.4 0.0 0.0 1.9 Phase Call Probability 1.00 1.00 0.00 0.00 Max Out Probability SB **Movement Group Results** EΒ WB NB Approach Movement L Т R L Т R L Т R Т L R **Assigned Movement** 5 2 6 16 7 4 14 Adjusted Flow Rate (v), veh/h 203 323 489 713 1810 1826 1636 Adjusted Saturation Flow Rate (s), veh/h/ln 1900 9.5 14.5 32.5 54.9 Queue Service Time (g_s), s Cycle Queue Clearance Time (g_c), s 9.5 14.5 32.5 54.9 0.32 Green Ratio (g/C) 0.42 0.45 0.45 Capacity (c), veh/h 283 864 580 741 Volume-to-Capacity Ratio (X) 0.719 0.373 0.843 0.962 Back of Queue (Q), ft/ln (95 th percentile) 186.2 274.9 582.7 785 Back of Queue (Q), veh/ln (95 th percentile) 7.4 11.0 23.3 31.4 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 0.00 41.3 Uniform Delay (d 1), s/veh 30.1 23.3 34.5 Incremental Delay (d 2), s/veh 1.3 1.2 13.9 11.7 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 31.4 24.5 55.2 46.2 Level of Service (LOS) С С Е D 27.2 С 55.2 Ε 0.0 46.2 Approach Delay, s/veh / LOS D Intersection Delay, s/veh / LOS 43.0 D **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.40 1.71 В 1.74 В 1.97 Α В Bicycle LOS Score / LOS 1.36 Α 1.29 Α 1.66


				HCS	7 Ro	unda	abc	outs F	Repo	t						
General Information							Site	e Info	rmatio	n						
Analyst	FTG						Inte	ersection			Thom	pson's S	Sta and	d Pantall		
Agency or Co.	FTG						E/V	V Street I	Name		Thom	pson's S	Station	n Road		
Date Performed	Sept	2018					N/S	S Street N	lame		Panta	II Road				
Analysis Year	2020						Ana	alysis Tim	ne Period	(hrs)	0.25					
Time Analyzed	AM P	eak Hou	r				Pea	ak Hour F	actor		0.89					
Project Description	10886	6 (Total)					Jur	isdiction			Thom	pson's S	Station	n, TN		
Volume Adjustments	and	Site C	haract	teristic	s											
Approach		E	B			W	/B		Т		NB				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1 0 0			0	0	0	0	0	1	0
Lane Assignment			L	Т			TR									LR
Volume (V), veh/h	0	244	311		0		285 66						0	94		147
Percent Heavy Vehicles, %	0	0	0		0		0 0						0	0		0
Flow Rate (VPCE), pc/h	0	274	349		0		320	74					0	106		165
Right-Turn Bypass		No	one			No	ne				None				None	
Conflicting Lanes			1	\neg		1	1								1	
Pedestrians Crossing, p/h			0			()								0	
Critical and Follow-Up Headway Adjustment																
Approach						т		WB		Т	NB		П		SB	
Lane				Right	Bypas	s Le	eft	Right	Bypass	Left	Righ	Вур	ass	Left	Right	Bypass
Critical Headway (s)				4.9763			一	4.9763					T		4.9763	
Follow-Up Headway (s)				2.6087				2.6087							2.6087	
Flow Computations,	Capa	city ar	nd v/c	Ratios												
Approach		\neg		EB		Т		WB		Т	NB		П		SB	
Lane			Left	Right	Bypas	s Le	eft	Right	Bypass	Left	Righ	Вур	ass	Left	Right	Bypass
Entry Flow (v _e), pc/h				623.00			一	394.00				1	T		271.00	
Entry Volume veh/h				623.00				394.00							271.00	
Circulating Flow (v₅), pc/h				106		\top		274			729		T		320	
Exiting Flow (vex), pc/h				455				485			348				0	
Capacity (c _{pce}), pc/h				1238.58			П	1043.53							995.70	
Capacity (c), veh/h				1238.58				1043.53							995.70	
v/c Ratio (x)				0.50			\neg	0.38							0.27	
Delay and Level of S	ervice					Ċ								,		
Approach EB					Т		WB		Τ	NB				SB		
Lane	Left Right Bypass			s Le	eft	Right	Bypass	Left	Righ	Вур	ass	Left	Right	Bypass		
Lane Control Delay (d), s/veh	ine Control Delay (d), s/veh 8.3					7.4							6.3			
Lane LOS	Lane LOS A						Α							Α		
95% Queue, veh				2.9				1.8							1.1	
Approach Delay, s/veh				8.3				7.4				·			6.3	
Approach LOS				А				Α							Α	
Intersection Delay, s/veh LO	· ·					7.6							A			
Converight @ 2019 University of	vright © 2018 University of Florida. All R					ICC TRM D	Pound	labouts V	orcion 7	6			Gono	ratod: 0/	26/2018	7·09·55 PM

	HCS7 Roundabouts Report																
General Information							Site	e Info	rmati	on	1						
Analyst	FTG						Inte	ersection				Thomp	son's Sta	and F	Pantall		
Agency or Co.	FTG						E/W	V Street I	Name			Thomp	son's Sta	tion R	Road		
Date Performed	Sept 2	2018					N/S	Street N	lame			Pantall	Road				
Analysis Year	2020						Ana	alysis Tim	e Perio	d (ł	nrs)	0.25					
Time Analyzed	PM Pe	eak Hour					Pea	ık Hour F	actor			0.99					
Project Description	10886	(Total)					Juri	sdiction				Thomp	son's Sta	tion, 1	TN		
Volume Adjustments	and S	Site C	haract	eristic	S												
Approach		E	В			W	'B		Т		NI	В				SB	
Movement	U	L	Т	R	U	L	Т	R	L		L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1 0 0			0	0	0	0	0	1	0	
Lane Assignment			L	Т			TR							•		LR	
Volume (V), veh/h	0	189	300		0		352 103						0	96	\top	567	
Percent Heavy Vehicles, %	0	0	0		0		0 0						0	0		0	
Flow Rate (VPCE), pc/h	0	191	303		0		356	104						0	97	\top	573
Right-Turn Bypass		No	ne			No	ne				No	ne				None	
Conflicting Lanes			1			1										1	
Pedestrians Crossing, p/h		()			0)									0	
Critical and Follow-Up Headway Adjustment																	
Approach EB						Т		WB		П		NB		Т		SB	
Lane			Left	Right	Bypass	Let	ft	Right	Вура	ss	Left	Right	Bypas	s I	Left	Right	Bypass
Critical Headway (s)				4.9763			T	4.9763		T						4.9763	
Follow-Up Headway (s)				2.6087				2.6087								2.6087	
Flow Computations,	Capac	ity ar	ıd v/c	Ratios													
Approach		\Box		EB		Т		WB		П		NB		Т		SB	
Lane			Left	Right	Bypass	. Let	ft	Right	Вура	ss	Left	Right	Bypas	s I	Left	Right	Bypass
Entry Flow (v _e), pc/h				494.00			一	460.00		\neg						670.00	
Entry Volume veh/h				494.00				460.00								670.00	
Circulating Flow (v₂), pc/h				97		1		191				591				356	
Exiting Flow (vex), pc/h				400				929				295				0	
Capacity (C _{pce}), pc/h				1250.00				1135.72								959.80	
Capacity (c), veh/h				1250.00		Т		1135.72								959.80	
v/c Ratio (x)				0.40				0.41								0.70	
Delay and Level of Se	ervice																
Approach EB							WB				NB				SB		
Lane	Left Right Bypass			s Let	ft	Right	Вура	ss	Left	Right	Bypas	s I	Left	Right	Bypass		
Lane Control Delay (d), s/veh	ane Control Delay (d), s/veh 6.7					7.3								15.4			
Lane LOS A						Α								С			
95% Queue, veh				1.9				2.0								6.0	
Approach Delay, s/veh				6.7				7.3								15.4	
Approach LOS				Α				Α								С	
Intersection Delay, s/veh LOS	tersection Delay, s/veh LOS					10.5								В			

HCS7 Signalized Intersection Results Summary Intersection Information **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date Sep 26, 2018 Area Type Other AM Peak Hour PHF 0.90 Jurisdiction Thompson's Station, TN Time Period Urban Street Thompson's Station Road Analysis Year 2020 (Total) **Analysis Period** 1> 7:00 Intersection Thompson's Sta and Bu... File Name 6 fuam.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R Demand (v), veh/h 136 110 216 237 576 0 421 **Signal Information** Cycle, s 100.0 Reference Phase 2 Offset, s 0 Reference Point End Green 34.0 0.0 0.0 0.0 54.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 0.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S 2.0 0.0 On Red 2.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 2 6 8 Case Number 8.0 8.0 12.0 Phase Duration, s 40.0 40.0 60.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 Max Allow Headway (MAH), s 0.0 0.0 3.2 Queue Clearance Time (g_s), s 56.0 Green Extension Time (g_e), s 0.0 0.0 0.0 Phase Call Probability 1.00 1.00 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R Т R L Т R L Т R L **Assigned Movement** 2 12 1 6 3 8 18 Adjusted Flow Rate (v), veh/h 273 503 1108 918 Adjusted Saturation Flow Rate (s), veh/h/ln 1758 1720 12.1 21.9 Queue Service Time (g_s), s 54.0 Cycle Queue Clearance Time (g_c), s 12.1 34.0 54.0 Green Ratio (g/C) 0.34 0.34 0.54 Capacity (c), veh/h 598 365 929 Volume-to-Capacity Ratio (X) 0.457 1.377 1.193 Back of Queue (Q), ft/ln (95 th percentile) 225.6 1085. 1573 9 Back of Queue (Q), veh/ln (95 th percentile) 9.0 43.4 62.9 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 Uniform Delay (d 1), s/veh 40.7 25.8 23.0 Incremental Delay (d 2), s/veh 2.5 186.2 97.5 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 226.9 120.5 Control Delay (d), s/veh 28.3 Level of Service (LOS) С F F Approach Delay, s/veh / LOS 28.3 С 226.9 F 120.5 F 0.0 Intersection Delay, s/veh / LOS 135.5 F **Multimodal Results** FB WB NB SB Pedestrian LOS Score / LOS 1.40 1.40 1.73 1.73 Α Α В В Bicycle LOS Score / LOS 0.94 Α 1.32 Α 2.32 В

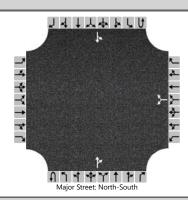

HCS7 Signalized Intersection Results Summary Intersection Information **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date Sep 26, 2018 Area Type Other PM Peak Hour PHF 0.95 Jurisdiction Thompson's Station, TN Time Period Urban Street Thompson's Station Road Analysis Year 2020 (Total) **Analysis Period** 1> 7:00 Intersection Thompson's Sta and Bu... File Name 6 fupm.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R Demand (v), veh/h 329 521 644 286 144 0 187 **Signal Information** Cycle, s 90.0 Reference Phase 2 Offset, s 0 Reference Point End Green 63.0 0.0 0.0 0.0 15.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 0.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S 2.0 0.0 On Red 2.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 2 6 8 Case Number 8.0 8.0 12.0 Phase Duration, s 69.0 69.0 21.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 Max Allow Headway (MAH), s 0.0 0.0 3.2 Queue Clearance Time (g_s), s 17.0 Green Extension Time (g_e), s 0.0 0.0 0.0 Phase Call Probability 1.00 1.00 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R Т R L Т R L Т R L **Assigned Movement** 2 12 1 6 3 8 18 Adjusted Flow Rate (v), veh/h 895 979 348 422 Adjusted Saturation Flow Rate (s), veh/h/ln 1711 1691 29.6 33.4 Queue Service Time (g_s), s 15.0 Cycle Queue Clearance Time (g_c), s 29.6 63.0 15.0 Green Ratio (g/C) 0.70 0.70 0.17 Capacity (c), veh/h 1198 363 282 Volume-to-Capacity Ratio (X) 0.747 2.698 1.236 Back of Queue (Q), ft/ln (95 th percentile) 354.4 3763. 631.1 7 Back of Queue (Q), veh/ln (95 th percentile) 14.2 150.5 25.2 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 Uniform Delay (d 1), s/veh 31.4 37.5 8.5 Incremental Delay (d 2), s/veh 4.3 771.9 133.0 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 803.3 170.5 Control Delay (d), s/veh 12.8 Level of Service (LOS) В F F Approach Delay, s/veh / LOS 12.8 В 803.3 F 170.5 F 0.0 Intersection Delay, s/veh / LOS 385.8 F **Multimodal Results** FB WB NB SB Pedestrian LOS Score / LOS 1.34 1.73 1.73 Α 1.34 Α В В Bicycle LOS Score / LOS 1.96 В 2.10 1.06 Α

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	FTG	Intersection	Thompson's St and Clayton								
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN								
Date Performed	Sept 2018	East/West Street	Thompson's Sta Road								
Analysis Year	2020	North/South Street	Clayton Arnold Road								
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.91								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	10886 (Total)										

Vehicle Volumes and Adj	justme	nts														
Approach		Eastb	ound			Westl	bound			North	bound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		LT						TR						L		R
Volume (veh/h)		32	155				404	465						88		83
Percent Heavy Vehicles (%)		0												0		0
Proportion Time Blocked																
Percent Grade (%)														(0	
Right Turn Channelized														Ν	lo	
Median Type Storage		Undivided														
Critical and Follow-up H	eadwa	dways														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		35												97		91
Capacity, c (veh/h)		728												279		443
v/c Ratio		0.05												0.35		0.21
95% Queue Length, Q ₉₅ (veh)		0.2												1.5		0.8
Control Delay (s/veh)		10.2												24.6		15.2
Level of Service (LOS)		В												С		С
Approach Delay (s/veh)		2.2						•			•			20	0.0	
Approach LOS														(C	

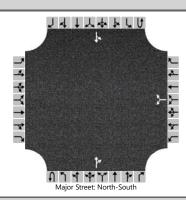
HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	FTG	Intersection	Thompson's St and Clayton								
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN								
Date Performed	Sept 2018	East/West Street	Thompson's Sta Road								
Analysis Year	2020	North/South Street	Clayton Arnold Road								
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.93								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	10886 (Total)										

Vehicle Volumes and Adju	ustme	nts															
Approach		Eastb	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		1	0	1	
Configuration		LT						TR						L		R	
Volume (veh/h)		71	399				312	101						585		86	
Percent Heavy Vehicles (%)		0												0		0	
Proportion Time Blocked																	
Percent Grade (%)														(0		
Right Turn Channelized														N	lo		
Median Type Storage				Undi	vided												
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)		4.1												7.1		6.2	
Critical Headway (sec)		4.10												6.40		6.20	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.20												3.50		3.30	
Delay, Queue Length, and	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)		76												629		92	
Capacity, c (veh/h)		1127												257		663	
v/c Ratio		0.07												2.44		0.14	
95% Queue Length, Q ₉₅ (veh)		0.2												51.1		0.5	
Control Delay (s/veh)		8.4												691.1		11.3	
Level of Service (LOS)		А											F B			В	
Approach Delay (s/veh)		1.9												60	4.0		
Approach LOS														ا	F		

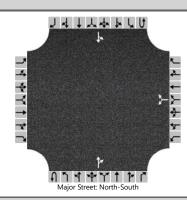

HCS7 Signalized Intersection Results Summary Intersection Information 144444 **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date 12/21/2014 Area Type Other PHF 0.95 Jurisdiction Thompson's Station, TN Time Period AM Peak Hour Urban Street Columbia Pike Analysis Year 2020 (Total) **Analysis Period** 1> 7:00 Columbia Pk and Thom... File Name 8 fuam.xus Intersection **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R R L R 219 Demand (v), veh/h 218 56 136 102 198 96 1310 102 54 872 177 **Signal Information** JI., Cycle, s 140.0 Reference Phase 2 Offset, s 0 Reference Point End 0.5 2.0 10.0 Green 5.3 89.1 9.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 4.0 4.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 0.0 2.0 2.0 0.0 2.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 4 3 8 2 6 7 5 1 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 17.0 18.0 15.0 16.0 11.9 95.7 11.3 95.1 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 3.3 3.1 3.3 3.1 0.0 3.1 0.0 Queue Clearance Time (g_s), s 13.0 14.0 11.0 12.0 4.7 3.5 Green Extension Time (g_e), s 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 Phase Call Probability 1.00 1.00 1.00 1.00 0.98 0.89 1.00 1.00 1.00 1.00 0.00 0.00 Max Out Probability **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 7 4 14 3 8 18 5 2 12 1 6 16 Adjusted Flow Rate (v), veh/h 229 202 231 316 101 1486 57 1104 1810 1685 1810 1698 1810 1876 1810 1844 Adjusted Saturation Flow Rate (s), veh/h/ln 11.0 12.0 9.0 10.0 2.7 89.7 1.5 75.9 Queue Service Time (g_s), s Cycle Queue Clearance Time (q c), s 11.0 12.0 9.0 10.0 2.7 89.7 1.5 75.9 Green Ratio (g/C) 0.15 0.09 0.14 0.07 0.68 0.64 0.67 0.64 Capacity (c), veh/h 194 144 168 121 176 1201 121 1174 Volume-to-Capacity Ratio (X) 1.185 1.399 1.374 2.603 0.574 1.237 0.471 0.941 Back of Queue (Q), ft/ln (95 th percentile) 335.4 553.9 445.7 1157 100.9 2625. 57 1127.9 6 Back of Queue (Q), veh/ln (95 th percentile) 13.4 22.2 17.8 46.3 4.0 105.0 2.3 45.1 Queue Storage Ratio (RQ) (95 th percentile) 3.73 3.96 4.46 7.23 0.63 5.25 0.36 2.26 Uniform Delay (d 1), s/veh 65.0 25.2 36.0 58.6 64.0 59.9 32.9 23.0 Incremental Delay (d 2), s/veh 123.5 216.0 201.3 744.8 1.1 114.2 1.1 15.4 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 280.0 261.3 34.0 139.3 37.1 Control Delay (d), s/veh 182.1 809.8 38.5 Level of Service (LOS) F F С D F D Approach Delay, s/veh / LOS 227.9 F 578.3 132.6 F 38.4 D Intersection Delay, s/veh / LOS 179.6 **Multimodal Results** FB WB NB SB Pedestrian LOS Score / LOS 1.96 1.89 В 1.96 В В 1.89 В Bicycle LOS Score / LOS 1.20 Α 1.39 Α 3.11 2.40 В

HCS7 Signalized Intersection Results Summary 144444 **General Information Intersection Information** FTG Duration, h 0.25 Agency FTG Analyst Analysis Date 12/21/2014 Area Type Other PM Peak Hour PHF 0.97 Jurisdiction Thompson's Station, TN Time Period Urban Street Columbia Pike Analysis Year 2020 (Total) **Analysis Period** 1> 7:00 Columbia Pk and Thom... File Name 8 fupm.xus Intersection **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R Demand (v), veh/h 325 109 254 242 106 130 177 1305 314 115 1420 323 **Signal Information** JI., Cycle, s 140.0 Reference Phase 2 MATE OF Offset, s 0 Reference Point End 8.0 Green 7.2 4.9 81.9 7.0 1.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 4.0 4.0 4.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 0.0 2.0 2.0 2.0 2.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 4 3 8 2 6 7 5 1 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 20.0 21.0 13.0 14.0 18.1 92.8 13.2 87.9 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 3.2 3.1 3.2 3.1 0.0 3.1 0.0 17.0 Queue Clearance Time (g_s), s 16.0 9.0 10.0 11.9 7.1 Green Extension Time (g_e), s 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0 Phase Call Probability 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.00 0.00 Max Out Probability **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 7 4 14 3 8 18 5 2 12 1 6 16 335 374 249 243 182 1669 119 1797 Adjusted Flow Rate (v), veh/h 1810 1687 1810 1729 1810 1836 1810 Adjusted Saturation Flow Rate (s), veh/h/ln 1839 7.0 9.9 86.8 5.1 81.9 Queue Service Time (g_s), s 14.0 15.0 8.0 Cycle Queue Clearance Time (q c), s 14.0 15.0 7.0 8.0 9.9 86.8 5.1 81.9 Green Ratio (g/C) 0.17 0.11 0.11 0.06 0.68 0.62 0.64 0.58 99 Capacity (c), veh/h 232 181 142 208 1138 144 1075 Volume-to-Capacity Ratio (X) 1.442 2.070 1.758 2.463 0.877 1.466 0.821 1.671 Back of Queue (Q), ft/ln (95 th percentile) 623.4 1242. 645.3 892.8 278.4 3885. 193.3 4899.1 5 3 Back of Queue (Q), veh/ln (95 th percentile) 24.9 49.7 25.8 35.7 11.1 155.4 7.7 196.0 Queue Storage Ratio (RQ) (95 th percentile) 6.93 8.87 6.45 5.58 1.74 7.77 1.21 9.80 66.0 42.2 Uniform Delay (d 1), s/veh 56.8 62.5 62.7 48.8 26.6 29.1 Incremental Delay (d 2), s/veh 221.5 499.9 368.4 687.7 8.5 214.6 4.4 306.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 562.4 431.1 241.2 46.6 Control Delay (d), s/veh 278.3 753.7 57.4 335.2 Level of Service (LOS) F F D Е F Approach Delay, s/veh / LOS 428.2 F 590.3 223.1 F 317.3 Intersection Delay, s/veh / LOS 325.1 **Multimodal Results** FB WB NB SB Pedestrian LOS Score / LOS 1.96 1.89 В 1.96 В В 1.90 В Bicycle LOS Score / LOS 1.66 В 1.30 Α 3.54 3.65 D

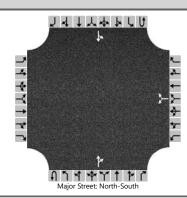
HCS7 Signalized Intersection Results Summary Intersection Information 144444 **General Information** Agency FTG Duration, h 0.25 FTG 12/21/2014 Analyst Analysis Date Area Type Other PHF 0.95 Jurisdiction Thompson's Station, TN Time Period AM Peak Hour Urban Street Columbia Pike Analysis Year 2020 (Total) **Analysis Period** 1> 7:00 Columbia Pk and Thom... File Name 8 fuam imp.xus Intersection **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R R L R 219 Demand (v), veh/h 218 56 136 102 198 96 1310 102 54 872 177 **Signal Information** JI., Cycle, s 100.0 Reference Phase 2 PAT T Offset, s 0 Reference Point End 0.9 7.0 Green 4.8 42.6 5.5 15.2 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 4.0 4.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 0.0 2.0 2.0 0.0 2.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 4 3 8 2 6 7 5 1 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 13.0 21.2 18.5 26.7 11.6 49.5 10.8 48.6 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 3.3 3.1 3.3 3.1 0.0 3.1 0.0 Queue Clearance Time (g_s), s 9.0 13.6 12.3 20.1 5.1 3.7 Green Extension Time (g_e), s 0.0 0.7 0.2 0.6 0.2 0.0 0.0 0.0 Phase Call Probability 1.00 1.00 1.00 1.00 0.94 0.79 1.00 0.22 0.60 0.41 0.00 0.00 Max Out Probability SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 7 4 14 3 8 18 5 2 12 1 6 16 Adjusted Flow Rate (v), veh/h 229 202 231 316 101 750 736 57 569 536 1810 1685 1810 1698 1810 1900 1851 1810 1900 1788 Adjusted Saturation Flow Rate (s), veh/h/ln 7.0 18.1 3.1 36.8 37.3 1.7 24.5 24.5 Queue Service Time (g_s), s 11.6 10.3 Cycle Queue Clearance Time (q c), s 7.0 11.6 10.3 18.1 3.1 36.8 37.3 1.7 24.5 24.5 0.22 0.21 0.47 Green Ratio (g/C) 0.15 0.29 0.48 0.44 0.44 0.43 0.43 Capacity (c), veh/h 205 257 342 352 268 827 806 173 810 763 Volume-to-Capacity Ratio (X) 1.118 0.787 0.674 0.898 0.377 0.907 0.914 0.328 0.702 0.702 Back of Queue (Q), ft/ln (95 th percentile) 298.8 223.2 201.9 348.7 55 658.1 656.2 31.1 427.8 409.1 Back of Queue (Q), veh/ln (95 th percentile) 12.0 8.9 8.1 13.9 2.2 26.3 26.2 1.2 17.1 16.4 Queue Storage Ratio (RQ) (95 th percentile) 3.32 1.59 2.02 2.18 0.34 1.32 1.31 0.19 0.86 0.82 40.8 22.8 Uniform Delay (d 1), s/veh 38.4 29.8 38.6 17.9 26.4 26.5 23.5 23.5 Incremental Delay (d 2), s/veh 98.2 7.0 2.2 17.3 0.3 15.5 16.6 0.4 5.0 5.4 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 136.7 47.8 32.0 55.9 18.2 41.9 43.0 23.2 28.5 28.8 Level of Service (LOS) F D С В D D С С С Ε 95.1 F 45.8 40.9 D 28.4 С Approach Delay, s/veh / LOS D Intersection Delay, s/veh / LOS 44.0 D **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.30 В 2.30 В 1.91 1.91 В В Bicycle LOS Score / LOS 1.20 Α 1.39 Α 1.80 В 1.45 Α


HCS7 Signalized Intersection Results Summary Intersection Information 144444 **General Information** Agency FTG Duration, h 0.25 FTG 12/21/2014 Analyst Analysis Date Area Type Other PHF 0.97 Jurisdiction Thompson's Station, TN Time Period PM Peak Hour Urban Street Columbia Pike Analysis Year 2020 (Total) **Analysis Period** 1> 7:00 Columbia Pk and Thom... File Name 8 fupm imp.xus Intersection **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 325 109 254 242 1305 Demand (v), veh/h 106 130 177 314 115 1420 323 **Signal Information** JI., Cycle, s 90.0 Reference Phase 2 TO T Offset, s 0 Reference Point End Green 5.7 4.0 6.0 1.4 41.9 7.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 4.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 0.0 2.0 2.0 0.0 2.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 4 3 8 2 6 7 5 1 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 17.0 16.0 13.0 12.0 13.1 49.3 11.7 47.9 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 3.2 3.1 3.2 3.1 0.0 3.1 0.0 Queue Clearance Time (g_s), s 13.0 12.0 9.0 8.0 6.9 5.0 Green Extension Time (g_e), s 0.0 0.0 0.0 0.0 0.3 0.0 0.1 0.0 Phase Call Probability 1.00 1.00 1.00 1.00 0.99 0.95 1.00 1.00 1.00 1.00 0.00 Max Out Probability 0.01 **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 7 4 14 3 8 18 5 2 12 1 6 16 Adjusted Flow Rate (v), veh/h 335 374 249 243 182 849 820 119 907 890 1810 1687 1810 1729 1810 1900 1774 1810 1900 1780 Adjusted Saturation Flow Rate (s), veh/h/ln 11.0 10.0 7.0 4.9 37.7 40.2 3.0 41.9 41.9 Queue Service Time (g_s), s 6.0 Cycle Queue Clearance Time (q c), s 11.0 10.0 7.0 6.0 4.9 37.7 40.2 3.0 41.9 41.9 0.53 Green Ratio (g/C) 0.19 0.11 0.14 0.07 0.54 0.48 0.48 0.47 0.47 854 Capacity (c), veh/h 301 188 221 115 223 914 198 885 829 Volume-to-Capacity Ratio (X) 1.113 1.996 1.130 2.111 0.820 0.928 0.961 0.598 1.025 1.074 Back of Queue (Q), ft/ln (95 th percentile) 337.1 1126.7 310.5 785.2 89.8 664.8 695.5 51.9 875.6 969.6 Back of Queue (Q), veh/ln (95 th percentile) 13.5 45.1 12.4 31.4 3.6 26.6 27.8 2.1 35.0 38.8 Queue Storage Ratio (RQ) (95 th percentile) 3.75 8.05 3.11 4.91 0.56 1.33 1.39 0.32 1.94 1.75 40.0 42.0 21.9 22.5 20.4 Uniform Delay (d 1), s/veh 36.6 38.9 21.4 24.0 24.0 Incremental Delay (d 2), s/veh 85.6 466.6 100.0 528.1 2.9 16.8 22.7 1.1 36.8 52.9 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 122.1 506.6 139.0 570.1 24.2 38.7 45.2 21.5 60.8 77.0 Level of Service (LOS) F С D D С F F 325.0 F 351.8 40.1 D 65.9 Ē Approach Delay, s/veh / LOS Intersection Delay, s/veh / LOS 121.6 **Multimodal Results** ΕB WB NB SB Pedestrian LOS Score / LOS 2.30 В 2.30 В 1.90 1.90 В В Bicycle LOS Score / LOS 1.66 В 1.30 Α 2.02 В 2.07

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Pantall Rd and N. Access
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Northern Project Access
Analysis Year	2020	North/South Street	Pantall Road
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.90
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	10886 (Total)		


Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						3		21			287	1		8	201	
Percent Heavy Vehicles (%)						0		0						0		
Proportion Time Blocked																
Percent Grade (%)						(0									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)						7.1		6.2						4.1		
Critical Headway (sec)						6.40		6.20						4.10		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.50		3.30						2.20		
Delay, Queue Length, and	d Leve	l of S	ervice													
Flow Rate, v (veh/h)							27							9		
Capacity, c (veh/h)							684							1251		
v/c Ratio							0.04							0.01		
95% Queue Length, Q ₉₅ (veh)							0.1							0.0		
Control Delay (s/veh)							10.5							7.9		
Level of Service (LOS)							В							А		
Approach Delay (s/veh)						10).5							0.4		
Approach LOS						ſ	В									

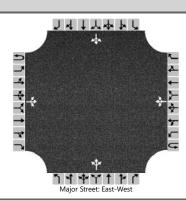
	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Pantall Rd and N. Access
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Northern Project Access
Analysis Year	2020	North/South Street	Pantall Road
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.90
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	10886 (Total)		


Vehicle Volumes and Adju	ıstme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						2		15			285	3		24	665	
Percent Heavy Vehicles (%)						0		0						0		
Proportion Time Blocked																
Percent Grade (%)						()									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)						7.1		6.2						4.1		
Critical Headway (sec)						6.40		6.20						4.10		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.50		3.30						2.20		
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)							19							27		
Capacity, c (veh/h)							576							1251		
v/c Ratio							0.03							0.02		
95% Queue Length, Q ₉₅ (veh)							0.1							0.1		
Control Delay (s/veh)							11.5							7.9		
Level of Service (LOS)						В								Α		
Approach Delay (s/veh)						11	1.5						0.6			
Approach LOS						I	3									

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Pantall Rd and S. Access
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Southern Project Access
Analysis Year	2020	North/South Street	Pantall Road
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.90
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	10886 (Total)		

Vehicle Volumes and Adju	ıstme	nts																				
Approach		Eastb	ound			West	oound			North	bound			South	bound							
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R						
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6						
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0						
Configuration							LR					TR		LT								
Volume (veh/h)						13		16			272	4		5	199							
Percent Heavy Vehicles (%)						0		0						0								
Proportion Time Blocked																						
Percent Grade (%)						()															
Right Turn Channelized																						
Median Type Storage				Undi	vided																	
Critical and Follow-up He	adwa	ys																				
Base Critical Headway (sec)						7.1		6.2						4.1								
Critical Headway (sec)						6.40		6.20						4.10								
Base Follow-Up Headway (sec)						3.5		3.3						2.2								
Follow-Up Headway (sec)						3.50		3.30						2.20								
Delay, Queue Length, and	Leve	l of Se	ervice																			
Flow Rate, v (veh/h)							32							6								
Capacity, c (veh/h)							613							1265								
v/c Ratio							0.05							0.00								
95% Queue Length, Q ₉₅ (veh)							0.2							0.0								
Control Delay (s/veh)							11.2							7.9								
Level of Service (LOS)					В								А									
Approach Delay (s/veh)						11	1.2						0.2									
Approach LOS						I	3															

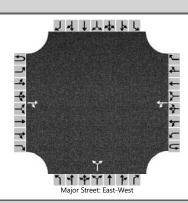
	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Pantall Rd and S. Access
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Southern Project Access
Analysis Year	2020	North/South Street	Pantall Road
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.90
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	10886 (Total)		


Approach		Eastb	ound			Westk	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						8		10			278	14		18	649	
Percent Heavy Vehicles (%)						0		0						0		
Proportion Time Blocked																
Percent Grade (%)						()									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up Ho	eadwa	ys														
Base Critical Headway (sec)						7.1		6.2						4.1		
Critical Headway (sec)						6.40		6.20						4.10		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.50		3.30						2.20		
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)							20							20		
Capacity, c (veh/h)							380							1247		
v/c Ratio							0.05							0.02		
95% Queue Length, Q ₉₅ (veh)							0.2							0.0		
Control Delay (s/veh)							15.0							7.9		
Level of Service (LOS)							С									
Approach Delay (s/veh)						15	5.0						0.4			
Approach LOS						(

TOTAL PROJECTED SATURDAY CONDITIONS

HCS7 Signalized Intersection Results Summary Intersection Information 747477 **General Information** Agency FTG Duration, h 0.25 FTG Analysis Date 12/21/2014 Analyst Area Type Other PM Peak Hour PHF 0.98 Jurisdiction Thompson's Station, TN Time Period Urban Street Columbia Pike Analysis Year 2020 (Total) **Analysis Period** 1> 7:00 Intersection Columbia Pk and Critz L... File Name 1 fupm.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R R L R L R Demand (v), veh/h 6 120 259 24 89 332 **Signal Information** Cycle, s 50.0 Reference Phase 2 Offset, s 0 Reference Point End Green 4.3 22.7 0.0 5.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 0.0 On Red 2.0 2.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 8 2 1 6 Case Number 9.0 8.3 1.0 4.0 Phase Duration, s 11.0 28.7 10.3 39.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.4 0.0 3.1 0.0 Queue Clearance Time (g_s), s 5.4 3.1 Green Extension Time (g_e), s 0.0 0.0 0.1 0.0 Phase Call Probability 0.83 0.72 1.00 0.00 Max Out Probability SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 3 18 2 12 1 6 Adjusted Flow Rate (v), veh/h 6 122 146 143 91 339 1810 1610 1900 1843 1810 1809 Adjusted Saturation Flow Rate (s), veh/h/ln 0.2 3.4 3.4 2.3 1.1 1.8 Queue Service Time (g_s), s Cycle Queue Clearance Time (g_c), s 0.2 3.4 3.4 2.3 1.1 1.8 0.45 0.58 Green Ratio (g/C) 0.10 0.19 0.45 0.66 299 Capacity (c), veh/h 181 863 837 727 2388 Volume-to-Capacity Ratio (X) 0.034 0.409 0.169 0.171 0.125 0.142 Back of Queue (Q), ft/ln (95 th percentile) 2.7 50.1 36.2 35.8 11.7 15.2 Back of Queue (Q), veh/ln (95 th percentile) 0.1 2.0 1.4 1.4 0.5 0.6 Queue Storage Ratio (RQ) (95 th percentile) 0.03 0.31 0.07 0.07 0.07 0.03 Uniform Delay (d 1), s/veh 20.3 17.9 8.1 8.1 5.0 3.2 Incremental Delay (d 2), s/veh 0.0 0.3 0.4 0.4 0.0 0.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 20.4 18.3 8.5 8.5 5.0 3.3 Level of Service (LOS) С В Α Α Α Α 0.0 18.4 В 8.5 Α 3.7 Approach Delay, s/veh / LOS Α Intersection Delay, s/veh / LOS 7.5 Α **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.13 В 2.30 В 1.88 0.64 В Α Bicycle LOS Score / LOS 0.73 Α 0.84 Α

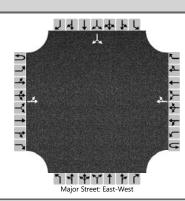
HCS7 Signalized Intersection Results Summary Intersection Information 747477 **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date 12/21/2014 Area Type Other PHF 0.98 Jurisdiction Thompson's Station, TN Time Period PM Peak Hour Urban Street Columbia Pike Analysis Year 2020 (Total) **Analysis Period** 1> 7:00 Intersection Columbia Pk and Critz L... File Name 1 fupm imp.xus **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R Demand (v), veh/h 6 120 259 24 89 332 **Signal Information** Cycle, s 50.0 Reference Phase 2 Offset, s 0 Reference Point End Green 4.3 22.7 0.0 5.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 0.0 On Red 2.0 2.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 8 2 1 6 Case Number 9.0 8.3 1.0 4.0 Phase Duration, s 11.0 28.7 10.3 39.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.4 0.0 3.1 0.0 Queue Clearance Time (g_s), s 3.8 3.1 Green Extension Time (g_e), s 0.1 0.0 0.1 0.0 Phase Call Probability 0.83 0.72 1.00 0.00 Max Out Probability SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 3 18 2 12 1 6 Adjusted Flow Rate (v), veh/h 6 122 146 143 91 339 1810 1425 1900 1843 1810 1809 Adjusted Saturation Flow Rate (s), veh/h/ln 0.2 1.8 3.4 2.3 1.1 1.8 Queue Service Time (g_s), s Cycle Queue Clearance Time (g_c), s 0.2 1.8 3.4 2.3 1.1 1.8 0.45 0.58 Green Ratio (g/C) 0.10 0.19 0.45 0.66 Capacity (c), veh/h 181 530 863 837 727 2388 Volume-to-Capacity Ratio (X) 0.034 0.231 0.169 0.171 0.125 0.142 Back of Queue (Q), ft/ln (95 th percentile) 2.7 23.8 36.2 35.8 11.7 15.2 Back of Queue (Q), veh/ln (95 th percentile) 0.1 1.0 1.4 1.4 0.5 0.6 Queue Storage Ratio (RQ) (95 th percentile) 0.03 0.15 0.07 0.07 0.07 0.03 17.3 Uniform Delay (d 1), s/veh 20.3 8.1 8.1 5.0 3.2 Incremental Delay (d 2), s/veh 0.0 0.1 0.4 0.4 0.0 0.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 20.4 17.4 8.5 8.5 5.0 3.3 Level of Service (LOS) С В Α Α Α Α 0.0 17.5 В 8.5 Α 3.7 Approach Delay, s/veh / LOS Α Intersection Delay, s/veh / LOS 7.4 Α **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.13 В 2.30 В 2.07 0.64 В Α Bicycle LOS Score / LOS 0.73 Α 0.84 Α


	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	FTG	Intersection	Critz and Clayton
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN
Date Performed	Sept 2018	East/West Street	Critz Lane
Analysis Year	2020	North/South Street	Clayton Arnold/Paddock
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	10886 (Total)		

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastk	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		6	51	56		19	53	22		55	11	19		10	13	18
Percent Heavy Vehicles (%)		0				0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (%)										()				0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.10				4.10				7.10	6.50	6.20		7.10	6.50	6.20
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		7				21					92				45	
Capacity, c (veh/h)		1529				1485					740				784	
v/c Ratio		0.00				0.01					0.12				0.06	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.4				0.2	
Control Delay (s/veh)		7.4				7.5					10.6				9.9	
Level of Service (LOS)		А				А					В				А	
Approach Delay (s/veh)		0.4 1.6								10).6			9	.9	
Approach LOS										В				A		

HCS7 Roundabout											· · · · · · · · · · · · · · · · · · ·									
General Information							Site	Critz and Clayton Arnold Critz Lane Clayton Arnold Road Road Clayton Arnold Road Road Clayton Clayto												
Analyst	FTG					\neg	Inte	ersection				Critz an	d Clayto	Road SB U L T R O 10 13 18 O 0 0 1 14 20 None 1 0 0 10 13 88 SB SS Left Right Bypass 4.9763 2.6087 SB SS Left Right Bypass 4.9763 2.6087 1197.58 1197.58 1197.58 1197.58						
Agency or Co.	FTG						E/V	V Street I	Name			Critz La	ne	Station, TN SB						
Date Performed	Sept 2	2018					N/S	S Street N	lame			Clayton								
Analysis Year	2020						Analysis Time Period (hrs) 0.25					SB S								
Time Analyzed	PM Pe	eak Houi					Pea	ak Hour F	actor			0.92								
Project Description	10886	(Total)					Juri	isdiction				Thomps	on's Sta	tion, TN						
Volume Adjustments	and S	Site C	haract	teristic	s															
Approach		Е	В			WI	В		Т		N	3				SB				
Movement	U	L	Т	R	U	L	Т	R	Ū	ı	L	Т	R	U	L	Т	R			
Number of Lanes (N)	0	0	1	0	0	0	1	0	C		0	1	0	0	0	1	0			
Lane Assignment			Lī	R				LTR				LTR					LTR			
Volume (V), veh/h	0	6	51	56	0	19	53	22	C		55	11	19	0	10	13	18			
Percent Heavy Vehicles, %	0	0	0	0	0	0	T R 1 0 LTR 0 53 22 0 0 0 58 24 None 1 0 WB Left Right Byp 4.9763			1	0	0	0	0	0	0	0			
Flow Rate (VPCE), pc/h	0	7	55	61	0	21	58	24	C		60	12	21	0	11	11 14 2				
Right-Turn Bypass		No	ne			Nor	None				No		None							
Conflicting Lanes			1			1	1				1		1							
Pedestrians Crossing, p/h		()			0					0			0						
Critical and Follow-Up Headway Adjustment																				
Approach	EB							WB		П		NB		Τ		SB				
Lane			Left	Right	Bypass	Lef	t	Right	Вура	SS	Left	Right	Bypass	L	Left	Right	Bypass			
Critical Headway (s)				4.9763				4.9763				4.9763				4.9763				
Follow-Up Headway (s)				2.6087				2.6087				2.6087				2.6087				
Flow Computations,	Capac	ity ar	ıd v/c	Ratios																
Approach				EB		T		WB		П		NB		\top		SB				
Lane			Left	Right	Bypass	Lef	t	Right	Вура	SS	Left	Right	Bypass	L	Left	Right	Bypass			
Entry Flow (v _e), pc/h				123.00				103.00				93.00				45.00				
Entry Volume veh/h				123.00				103.00				93.00				45.00				
Circulating Flow (v∈), pc/h				46				79				73				139				
Exiting Flow (vex), pc/h				87				138				43				96				
Capacity (c _{pce}), pc/h				1316.74				1273.16				1280.98				1197.58				
Capacity (c), veh/h				1316.74				1273.16				1280.98				1197.58				
v/c Ratio (x)				0.09				0.08				0.07				0.04				
Delay and Level of Se	ervice																			
Approach				EB				WB				NB				SB				
Lane		Left Right Bypass						Right	Вура	SS	Left	Right	Bypass	L	Left	Right	Bypass			
Lane Control Delay (d), s/veh				3.5				3.5				3.4				3.3				
Lane LOS				А				Α				А				A				
95% Queue, veh				0.3				0.3				0.2				0.1				
Approach Delay, s/veh				3.5				3.5				3.4				3.3				
Approach LOS A							A A A													
Intersection Delay, s/veh LOS		3.4								Α										

	HCS7 Two-Way Stop	o-Control Report								
General Information		Site Information								
Analyst	FTG	Intersection	Critz and Pantall							
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN							
Date Performed	Sept 2018	East/West Street	Critz Lane							
Analysis Year	2020	North/South Street	Pantall Road							
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.95							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	10886 (Total)									

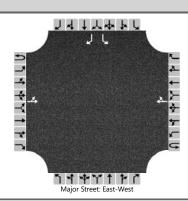

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			52	28		47	70			24		53				
Percent Heavy Vehicles (%)						0				0		0				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.10				6.40		6.20				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.20				3.50		3.30				
Delay, Queue Length, and	d Leve	l of S	ervice													
Flow Rate, v (veh/h)						49					81					
Capacity, c (veh/h)						1525					894					
v/c Ratio						0.03					0.09					
95% Queue Length, Q ₉₅ (veh)						0.1					0.3					
Control Delay (s/veh)						7.4					9.4					
Level of Service (LOS)						А					А					
Approach Delay (s/veh)					3.1				9.4							
Approach LOS									A							

Generated: 9/26/2018 7:14:08 PM

				HCS.	7 Roi	ında	ndabouts Report											
General Information							Site	e Info	matic	on								
Analyst	FTG						Inte	ersection			Critz ar	ıd Pantal						
Agency or Co.	FTG						E/V	V Street N	Name		Critz La	ne						
Date Performed	Sept 2	2018					N/S	S Street N	lame		Pantall	Lane						
Analysis Year	2020						Ana	alysis Tim	e Period	(hrs)	0.25							
Time Analyzed	PM Pe	ak Houi	r				Pea	ak Hour F	actor		0.92							
Project Description	10886	(Total)					Juri	isdiction			Thomp	son's Sta	tion, T	N				
Volume Adjustments	and S	Site C	haract	eristic	s													
Approach		Е	:B			W	В				NB				SB			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Number of Lanes (N)	0	0	1	0	0	0	1 0		0	0	1	0	0	0	0	0		
Lane Assignment			Т	R				LT			LR							
Volume (V), veh/h	0		52	28	0	47	70		0	24		53						
Percent Heavy Vehicles, %	0		0	0	0	0	0		0	0		0						
Flow Rate (VPCE), pc/h	0		57	30	0	51	76		0	26		58						
Right-Turn Bypass		No	ne			No	ne			, N	one				None			
Conflicting Lanes			1			1					1							
Pedestrians Crossing, p/h		(0		0)				0								
Critical and Follow-U	р Неа	adway	/ Adju	stmen														
Approach				EB			WB			NB				SB				
Lane			Left	Right	Bypass	Let	ft	Right	Bypass	Left	Right	Bypass	L	.eft	Right	Bypass		
Critical Headway (s)				4.9763				4.9763			4.9763							
Follow-Up Headway (s)				2.6087			2.6087				2.6087							
Flow Computations,	Capac	ity ar	nd v/c	Ratios														
Approach				EB			WB			NB					SB			
Lane			Left	Right	Bypass	Let	ft	Right	Bypass	Left	Right	Bypass	L	.eft	Right	Bypass		
Entry Flow (v _e), pc/h				87.00			127.00				84.00							
Entry Volume veh/h				87.00			127.00				84.00							
Circulating Flow (v₀), pc/h				51				26			57				153			
Exiting Flow (vex), pc/h				115				102			0				81			
Capacity (c _{pce}), pc/h				1310.05				1343.88			1302.05							
Capacity (c), veh/h				1310.05				1343.88			1302.05							
v/c Ratio (x)				0.07				0.09			0.06							
Delay and Level of Se	ervice		567															
Approach			EB					WB			NB				SB			
Lane			Left Right Bypass Li					Right	Bypass	Left	Right	Bypass	L	_eft	Right	Bypass		
Lane Control Delay (d), s/veh			3.3					3.4			3.3							
Lane LOS			A					Α			А							
95% Queue, veh			0.2					0.3		0.2								
Approach Delay, s/veh			3.3					3.4		3.3								
Approach LOS			A A				A			A								
Intersection Delay, s/veh LOS	5				3.3					A								

HCS	7 Sig	nalize	d Int	ersect	tion R	Resu	ults	Sur	nmar	у				
General Information							Inte	reacti	ion Inf	ormatio	nn .	T .	14741	ļa Ļ
F								ation,		0.25) 	- 1	ΔŢ	
0 7		Analys	is Date	12/21/	/2014					Other		J		
	TNI	Time P			eak Hou		PHF	а Туре -	;	0.99			w + €	}- A
Jurisdiction Thompson's Station Urban Street Columbia Pike	I, IIN	-				ll .			Dariad	1> 7:0	20			
		Analys					Anai	iysis F	Period	1> 7:0)0	5		-
Intersection Lewisburg and Critz	Lane	File Na	ime	4_fupr	m.xus							_	<u>ነ</u> ተ	
Project Description 10886													14 144	r
Demand Information			EB			V	/B		Ī	NB			SB	
Approach Movement		L	Т	R	L	Т-	тТ	R	L	Т	R	L	Т	R
Demand (v), veh/h		81		24					10	307		 	319	107
2 5												_	0.0	
Signal Information				ŢŢ	2	Т								
Cycle, s 80.0 Reference Phase	2	1	251	F ↑	E.							4].	~
Offset, s 0 Reference Point	End	Green		49.0	8.0	0.	_	0.0	0.0		1 (2	3	Y 4
Uncoordinated No Simult. Gap E/W	On	Yellow		4.0	4.0	0.		0.0	0.0			1 ∣⁺	┙╭╴│	
Force Mode Fixed Simult. Gap N/S	On	Red	0.0	2.0	2.0	0.		0.0	0.0	コ	5	6	7	8
Timer Results		EBL		EBT	WBI	L	WB	3T	NBI	-	NBT	SBI	L	SBT
Assigned Phase				4					5		2			6
Case Number				9.0				П	1.0		4.0			7.3
Phase Duration, s				14.0		\neg			11.0		66.0			55.0
Change Period, (Y+Rc), s				6.0					4.0		6.0			6.0
Max Allow Headway (MAH), s				3.2					3.1		0.0			0.0
Queue Clearance Time (g s), s				5.4					2.1					
Green Extension Time (g e), s			\neg	0.0		\neg			0.0		0.0			0.0
Phase Call Probability				1.00					1.00)		1		
Max Out Probability			\neg	1.00		\neg			0.01					
Movement Group Results		<u> </u>	EB			WI		_		NB			SB	
Approach Movement		L	Т	R	L	T		R	L	T	R	L	T	R
Assigned Movement		7		14			\perp	_	5	2			6	16
Adjusted Flow Rate (v), veh/h		82		24				_	10	310			322	108
Adjusted Saturation Flow Rate (s), veh/h/l	n	1810		1610			\perp	_	1810	1900			1900	1610
Queue Service Time (g s), s		3.4		1.0					0.1	3.9			6.3	1.7
Cycle Queue Clearance Time ($g\ c$), s		3.4		1.0			\perp		0.1	3.9			6.3	1.7
Green Ratio (g/C)		0.10		0.19					0.72	0.75			0.61	0.71
Capacity (c), veh/h		181		302					821	1425			1164	1147
Volume-to-Capacity Ratio (X)		0.452		0.080					0.012	0.218			0.277	0.094
Back of Queue (Q), ft/ln (95 th percentile)		66.5		16.7					1.4	47			104.5	19.4
Back of Queue (Q), veh/ln (95 th percenti	le)	2.7		0.7					0.1	1.9			4.2	0.8
Queue Storage Ratio (RQ) (95 th percent	ile)	0.74		0.12					0.01	0.09			0.21	0.04
Uniform Delay (d 1), s/veh		33.9		26.8					3.5	3.0			7.2	3.5
Incremental Delay (d 2), s/veh		0.7		0.0					0.0	0.4			0.6	0.2
Initial Queue Delay (d 3), s/veh		0.0		0.0					0.0	0.0			0.0	0.0
Control Delay (d), s/veh		34.6		26.9					3.5	3.3			7.8	3.7
Level of Service (LOS)	С		С					Α	Α			Α	Α	
Approach Delay, s/veh / LOS	32.8		С	0.0				3.3		Α	6.8		Α	
Intersection Delay, s/veh / LOS			8	.7							Α			
Multimodal Results		EB			WI				NB			SB		
Pedestrian LOS Score / LOS		1.95		В	1.95	5	В		0.64	L _	Α	1.87	7	В
Bicycle LOS Score / LOS				F					1.02	2	Α	1.20)	Α

	HCS7 Two-Way Stoր	o-Control Report								
General Information		Site Information								
Analyst	FTG	Intersection	Thompson's St and Pantall							
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN							
Date Performed	Sept 2018	East/West Street	Thompson's Sta Road							
Analysis Year	2020	North/South Street	Pantall Road							
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.93							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	10886 (Total)									

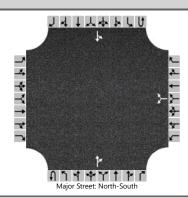

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		53	188				294	8						8		44
Percent Heavy Vehicles (%)		0												0		0
Proportion Time Blocked																
Percent Grade (%)													0			
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30
Delay, Queue Length, and	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		57													56	
Capacity, c (veh/h)		1246													653	
v/c Ratio		0.05													0.09	
95% Queue Length, Q ₉₅ (veh)		0.1													0.3	
Control Delay (s/veh)		8.0													11.0	
Level of Service (LOS)		А												В		
Approach Delay (s/veh)	2.1												11.0			
Approach LOS												В				

	HCS	7 Sig	nalize	d In	tersec	tion	Resu	Its Sı	ımm	ary								
General Information								Interse	oction	Info	rmatic	nn -		14741	يا دا			
-	FTG							Duratio			0.25	JII		*				
Agency	FTG		Analye	sia Dat	e Jan 1	7 2019					Other		J 2		L.			
Analyst Jurisdiction		Dood	Time F		\rightarrow	Peak Ho		Area T	ype		0.93		— <u>→</u> _,	w)- A			
Urban Street	Thompson's Station						our		ia Dari		0.93 1> 7:0	00	— ₹					
	Thompson's Station		Analys			(Total)		Analys	is Pen	od	1> 7:0	00	-		·			
Intersection	Thompson's Sta an	d Pa	File Na	ame	5_Tup	m_sig.	xus						_ [ካ ቀ ተቀጥተ የ				
Project Description	10886													14 147	P [
Demand Information	<u> </u>			EB		\top	W	 В			NB		\neg	SB				
Approach Movement			L	Т	R	L	Т		2	L	Т	R	L	Т	R			
Demand (v), veh/h			53	188			29	_	_				8	0	44			
20																		
Signal Information							<u>.</u>								1			
Cycle, s 70.0	Reference Phase	2	1	\Rightarrow			_						4		A			
Offset, s 0	Reference Point	End	Green	1.0	44.0	4.0	0.0	0.0	0 (0.0		1	2	3	4			
Uncoordinated No	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0			0.0		д [—					
Force Mode Fixed	Simult. Gap N/S	On	Red	2.0	2.0	2.0	0.0			0.0		5	6	7	8			
Timer Results		EBI	-	EBT	W	3L	WBT		NBL		NBT	SB	L	SBT				
Assigned Phase			5		2			6							4			
Case Number		1.0		4.0			8.3							12.0				
Phase Duration, s		10.0)	60.0			50.0							10.0				
Change Period, (Y+F	6.0		6.0			6.0							6.0					
Max Allow Headway (3.1		0.0			0.0							3.3					
Queue Clearance Tim	2.6												4.3					
Green Extension Time (g e), s					0.0			0.0							0.0			
Phase Call Probability				7											0.66			
Max Out Probability			0.00												0.60			
Movement Group Re	esults			EB		┡	WB	_	_		NB			SB				
Approach Movement			L	T	R	L	T	R		-	T	R	L	T	R			
Assigned Movement			5	2		_	6	16	_	_			7	4	14			
Adjusted Flow Rate (v), veh/h		57	202		_	325							56				
Adjusted Saturation F	· , , ,	n	1810	1900		_	189		_	_				1638				
Queue Service Time (,		0.6	1.9		_	5.4			\perp				2.3				
Cycle Queue Clearan	ce Time ($g \ c$), s		0.6	1.9		_	5.4		_	_				2.3				
Green Ratio (g/C)			0.71	0.77		_	0.63	:						0.06				
Capacity (c), veh/h			798	1466	:	_	1189)	_					93				
Volume-to-Capacity R			0.071	0.138	3		0.27			[0.601				
Back of Queue (Q),	· · · · · ·		6.4	17			80.7							42.4				
Back of Queue (Q),	· · · · · · · · · · · · · · · · · · ·		0.3	0.7			3.2							1.7				
Queue Storage Ratio	, , , .	tile)	0.00 3.4	0.00			0.00							0.00				
	Uniform Delay (d 1), s/veh			2.0			5.8							32.2				
Incremental Delay (d 2), s/veh			0.0	0.2			0.6							2.3				
Initial Queue Delay (d 3), s/veh			0.0	0.0			0.0							0.0				
Control Delay (d), s/veh			3.4	2.2			6.4							34.5				
Level of Service (LOS)			Α	Α			Α							С				
Approach Delay, s/veh / LOS			2.5		Α	6.	4	Α		0.0			34.5	5	С			
Intersection Delay, s/veh / LOS			7.3									Α						
												_						
Multimodal Results				EB		-	WB				NB			SB				
Pedestrian LOS Score			1.30	_	A	1.6	_	В		1.72		В	1.9	_	В			
Bicycle LOS Score / L	_OS		0.92	2	Α	1.0)2	Α					0.58	3	Α			

Number of Lanes (N)					unda	ndabouts Report														
Agency or Co.	General Information							Site	e Info	rma	atior	1								
Date Performed	Analyst	FTG	i					Inte	ersection	1			Thomp	son's Sta	and	Pantall				
Analysis Year	Agency or Co.	FTG	i					E/V	N Street	Name	е		Thomp	son's Sta	tion F	Road				
Time Analyzed	Date Performed	Sept 2	t 2018					N/S	S Street N	Name	e		Pantall	Road						
Project Description 10886 (Total) Jurisdiction Thompson's Station, TN	Analysis Year	2020	20					An	alysis Tin	ne Pe	eriod (l	hrs)	0.25							
Volume Adjustments and Site Characteristics Approach E	Time Analyzed	PM Pe	Peak Ho	ır				Pea	ak Hour F	actor	r		0.99							
Movement	Project Description	10886	886 (Total					Jur	isdiction				Thomp	son's Sta	tion,	TN				
Movement U L T R U L	Volume Adjustments	and	Site (Charac	teristic															
Number of Lanes (N) 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Approach			EB		W	WB				N				SB					
Lane Assignment	Movement	U	L	Т	R	U	L				U	L	Т	R	U	L	Т	R		
Volume (V), vely/h	Number of Lanes (N)	0	0	1	0	0	0				0 0		0	0	0	0	1	0		
Percent Heavy Vehicles, % 0 0 0 0 0 0 0 0 0	Lane Assignment				.T				TR									LR		
Flow Rate (wee), pc/h	Volume (V), veh/h	0	53	188		0		294	4 8						0	8		44		
Right-Turn Bypass None None <td>Percent Heavy Vehicles, %</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td></td> <td>0</td>	Percent Heavy Vehicles, %	0	0	0			0	0						0	0		0			
Pedestrians Crossing, p/h	Flow Rate (VPCE), pc/h	0	54	190			297	7 8						0	8		44			
Pedestrians Crossing, p/h O<	Right-Turn Bypass			lone			No	ne				No	ne			Ċ	None			
Critical and Follow-Up Headway Adjustment Approach EB WB NB NB SB SB Lane Left Right Bypass Left <t< td=""><td>Conflicting Lanes</td><td></td><td></td><td>1</td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td colspan="4"></td></t<>	Conflicting Lanes			1		1	1													
Approach Left Right Bypass	Pedestrians Crossing, p/h			0		C)													
Lane Left Right Bypass Left Right Bypass <th< td=""><td>Critical and Follow-U</td><td>Јр Неа</td><td>eadwa</td><td>y Adju</td><td>stmen</td><td></td><td colspan="4"></td><td colspan="4"></td><td></td><td></td><td></td></th<>	Critical and Follow-U	Јр Неа	eadwa	y Adju	stmen															
Critical Headway (s) 4.9763	Approach				EB							NB		Т		SB				
Follow-Up Headway (s)	Lane			Left	Right	Bypass	s Le	ft	Right	Вур	pass	Left	Right	Bypas	ass Left		Right	Bypass		
Flow Computations, Capacity and v/c Ratios SB	Critical Headway (s)				4.9763				4.9763								4.9763			
Approach EB WB NB NB SB SB Lane Left Right Bypass	Follow-Up Headway (s)				2.6087				2.6087						Ť		2.6087			
Lane Left Right Bypass Left Right Bypass <th< td=""><td>Flow Computations,</td><td>Capac</td><td>acity a</td><td>nd v/c</td><td>Ratios</td><td>;</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td colspan="3"></td><td></td></th<>	Flow Computations,	Capac	acity a	nd v/c	Ratios	;														
Entry Flow (ve), pc/h Entry Volume veh/h Circulating Flow (ve), pc/h Exiting Flow (ve), pc/h Capacity (cpee), pc/h Capacity (c), veh/h V/c Ratio (x) Entry Volume veh/h 244.00 244.00 305.00	Approach				EB			WB				NB			\top		SB			
Entry Volume veh/h Circulating Flow (vc), pc/h Exiting Flow (vex), pc/h Capacity (cpce), pc/h Capacity (c), veh/h V/c Ratio (x) S244.00 305.00 305.00 305.00 305.00 52.00 52.00 5297 62 0 1019.33 1368.78 1306.04 1306.04 1306.04 1019.33 1019.33 1019.33	Lane			Left	Right	Bypass	s Le	eft Right B			pass	Left	Right	Bypas	s	Left	Right	Bypass		
Circulating Flow (vc), pc/h 8 54 252 297 Exiting Flow (vex), pc/h 198 341 62 0 Capacity (cpec), pc/h 1368.78 1306.04 1019.33 Capacity (c), veh/h 1368.78 1306.04 1019.33 v/c Ratio (x) 0.18 0.23 0.23 0.05	Entry Flow (v _e), pc/h				244.00												52.00			
Exiting Flow (vex), pc/h 198 341 62 0 Capacity (cpce), pc/h 1368.78 1306.04 1306.04 1019.33 Capacity (c), veh/h 1368.78 1306.04 1306.04 1019.33 v/c Ratio (x) 0.18 0.23 0.23 0.05	Entry Volume veh/h				244.00												52.00			
Capacity (c _{pce}), pc/h Capacity (c), veh/h 1368.78 1306.04 1306.04 1019.33 V/c Ratio (x) 0.18 0.23 1019.33	Circulating Flow (v₅), pc/h				8				54				252				297			
Capacity (c), veh/h 1368.78 1306.04 1019.33 v/c Ratio (x) 0.18 0.23 0.23	Exiting Flow (vex), pc/h				198				341				62				0			
v/c Ratio (x) 0.18 0.23 0.23 0.05	Capacity (c _{pce}), pc/h				1368.78				1306.04								1019.33			
	Capacity (c), veh/h				1368.78				1306.04								1019.33			
Delay and Level of Service	v/c Ratio (x)				0.18				0.23								0.05			
	Delay and Level of S	ervice	:e																	
Approach EB WB NB SB	Approach				EB			WB				NB				SB				
Lane Left Right Bypass Right Rig	Lane			Left	Right	Le	ft	Right	Вур	pass	Left	Right	Bypas	s	Left	Right	Bypass			
Lane Control Delay (d), s/veh 4.1 4.8 4.0 4.0	Lane Control Delay (d), s/veh				4.1			4.8								4.0				
Lane LOS A A A A A	Lane LOS								А								А			
95% Queue, veh 0.6 0.9 0.9 0.2	95% Queue, veh								0.9								0.2			
Approach Delay, s/veh 4.1 4.8 4.0	Approach Delay, s/veh															4.0				
Approach LOS A A A A	Approach LOS															А				
Intersection Delay, s/veh LOS 4.4 A	Intersection Delay, s/veh LO	S										A								

HCS7 Signalized Intersection Results Summary Intersection Information **General Information** Agency FTG Duration, h 0.25 FTG Analyst Analysis Date Sep 26, 2018 Area Type Other PM Peak Hour PHF 0.95 Jurisdiction Thompson's Station, TN Time Period Urban Street Thompson's Station Road Analysis Year 2020 (Total) **Analysis Period** 1> 7:00 Intersection Thompson's Sta and Bu... File Name 6 fupm.xus **Project Description** 10886 WB **Demand Information** EB NB SB Approach Movement L R L R L R L R 299 Demand (v), veh/h 69 179 39 126 0 172 **Signal Information** Cycle, s 50.0 Reference Phase 2 Offset, s 0 Reference Point End Green 26.7 0.0 0.0 0.0 11.3 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S 2.0 0.0 On Red 2.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL **SBT Assigned Phase** 2 6 8 Case Number 8.0 8.0 12.0 Phase Duration, s 32.7 32.7 17.3 Change Period, (Y+Rc), s 6.0 6.0 6.0 Max Allow Headway (MAH), s 0.0 0.0 3.2 Queue Clearance Time (g_s), s 10.8 Green Extension Time (g_e), s 0.0 0.0 0.6 Phase Call Probability 0.99 0.00 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R Т R L Т R L Т R L **Assigned Movement** 2 12 1 6 3 8 18 Adjusted Flow Rate (v), veh/h 261 356 314 1682 1019 1689 Adjusted Saturation Flow Rate (s), veh/h/ln 4.3 11.1 Queue Service Time (g_s), s 8.8 Cycle Queue Clearance Time (g_c), s 4.3 15.4 8.8 Green Ratio (g/C) 0.53 0.53 0.23 Capacity (c), veh/h 899 680 381 Volume-to-Capacity Ratio (X) 0.291 0.523 0.823 Back of Queue (Q), ft/ln (95 th percentile) 52.6 120 137.2 Back of Queue (Q), veh/ln (95 th percentile) 2.1 4.8 5.5 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 10.4 Uniform Delay (d 1), s/veh 6.4 18.4 Incremental Delay (d 2), s/veh 8.0 2.9 1.7 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 Control Delay (d), s/veh 7.2 13.3 20.1 Level of Service (LOS) Α В С 7.2 13.3 В 20.1 С 0.0 Approach Delay, s/veh / LOS Α Intersection Delay, s/veh / LOS 13.9 В **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.35 1.35 1.71 1.71 Α Α В В Bicycle LOS Score / LOS 0.92 Α 1.07 Α 1.01 Α

	HCS7 Two-Way Stop	o-Control Report								
General Information		Site Information								
Analyst	FTG	Intersection	Thompson's St and Clayton							
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN							
Date Performed	Sept 2018	East/West Street	Thompson's Sta Road							
Analysis Year	2020	North/South Street	Clayton Arnold Road							
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.93							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	10886 (Total)									

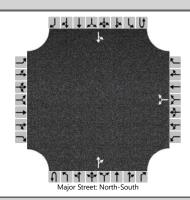

Vehicle Volumes and Adj	justme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		LT						TR						L		R
Volume (veh/h)		17	76				76	89						172		91
Percent Heavy Vehicles (%)		0												0		0
Proportion Time Blocked																
Percent Grade (%)													0			
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	Т	4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		18												185		98
Capacity, c (veh/h)		1411												735		926
v/c Ratio		0.01												0.25		0.11
95% Queue Length, Q ₉₅ (veh)		0.0												1.0		0.4
Control Delay (s/veh)		7.6												11.5		9.3
Level of Service (LOS)		А												В		А
Approach Delay (s/veh)		1.5										-	10.8			
Approach LOS	Ì	1.5											В			

HCS7 Signalized Intersection Results Summary Intersection Information 144444 **General Information** Agency FTG Duration, h 0.25 FTG 12/21/2014 Analyst Analysis Date Area Type Other PM Peak Hour PHF 0.97 Jurisdiction Thompson's Station, TN Time Period Urban Street Columbia Pike Analysis Year 2020 (Total) **Analysis Period** 1> 7:00 Columbia Pk and Thom... File Name 8 fupm.xus Intersection **Project Description** 10886 WB **Demand Information** EB NB SB Approach Movement L R L R L R L R 64 88 43 36 306 Demand (v), veh/h 17 13 32 257 67 13 6 **Signal Information** JI., Cycle, s 70.0 Reference Phase 2 PAT T Offset, s 0 Reference Point End 1.7 5.8 Green 1.4 1.5 32.4 3.2 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 4.0 4.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 0.0 2.0 2.0 0.0 2.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 4 3 8 2 6 7 5 1 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 7.7 11.8 11.0 15.1 8.8 39.8 7.4 38.4 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 3.2 3.1 3.2 3.1 0.0 3.1 0.0 Queue Clearance Time (g_s), s 2.6 5.2 5.1 5.0 2.6 2.3 Green Extension Time (g_e), s 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 Phase Call Probability 0.29 0.97 0.83 0.99 0.47 0.23 0.06 1.00 1.00 0.04 0.00 0.00 Max Out Probability **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 7 4 14 3 8 18 5 2 12 1 6 16 Adjusted Flow Rate (v), veh/h 18 79 91 81 33 334 13 322 1810 1653 1810 1756 1810 1832 1810 1893 Adjusted Saturation Flow Rate (s), veh/h/ln 0.6 3.2 3.1 3.0 0.6 0.3 7.7 Queue Service Time (g_s), s 8.1 Cycle Queue Clearance Time (q c), s 0.6 3.2 3.1 3.0 0.6 8.1 0.3 7.7 0.11 Green Ratio (g/C) 0.08 0.15 0.13 0.50 0.48 0.48 0.46 Capacity (c), veh/h 226 137 281 227 555 886 499 876 Volume-to-Capacity Ratio (X) 0.078 0.578 0.323 0.359 0.059 0.377 0.027 0.367 Back of Queue (Q), ft/ln (95 th percentile) 11.4 57.6 58 54.2 10 140.9 4.3 141.3 Back of Queue (Q), veh/ln (95 th percentile) 0.5 2.3 2.3 2.2 0.4 5.6 0.2 5.7 Queue Storage Ratio (RQ) (95 th percentile) 0.13 0.41 0.58 0.34 0.06 0.28 0.03 0.28 10.0 Uniform Delay (d 1), s/veh 28.2 30.9 26.4 27.8 9.2 11.4 12.2 Incremental Delay (d 2), s/veh 0.1 1.4 0.2 0.4 0.0 1.2 0.0 1.2 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 28.2 32.3 26.7 28.2 9.3 12.6 10.0 13.4 Level of Service (LOS) С С С С Α В Α В 31.6 С 27.4 С 12.3 13.2 Approach Delay, s/veh / LOS В В Intersection Delay, s/veh / LOS 17.2 В **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.93 В 1.93 В 1.89 1.89 В В Bicycle LOS Score / LOS 0.65 Α 0.77 Α 1.09 Α 1.04 Α

HCS7 Signalized Intersection Results Summary Intersection Information 144444 **General Information** Agency FTG Duration, h 0.25 FTG 12/21/2014 Analyst Analysis Date Area Type Other PHF 0.97 Jurisdiction Thompson's Station, TN Time Period PM Peak Hour Urban Street Columbia Pike Analysis Year 2020 (Total) **Analysis Period** 1> 7:00 Columbia Pk and Thom... File Name 8 fupm imp.xus Intersection **Project Description** 10886 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 64 88 43 36 306 Demand (v), veh/h 17 13 32 257 67 13 6 **Signal Information** JI., Cycle, s 60.0 Reference Phase 2 TO T Offset, s 0 Reference Point End 5.7 Green 1.2 1.3 23.1 1.5 3.2 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 4.0 4.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 0.0 2.0 2.0 0.0 2.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 4 3 8 2 6 7 5 1 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 7.5 11.7 10.7 14.9 8.5 30.4 7.2 29.1 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 3.1 3.2 3.1 3.2 3.1 0.0 3.1 0.0 Queue Clearance Time (g_s), s 2.5 4.7 4.6 4.5 2.6 2.3 Green Extension Time (g_e), s 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.0 Phase Call Probability 0.25 0.95 0.78 0.98 0.42 0.20 0.01 0.24 1.00 0.00 0.00 Max Out Probability 0.01 SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 7 4 14 3 8 18 5 2 12 1 6 16 Adjusted Flow Rate (v), veh/h 18 79 91 81 33 171 163 13 161 161 Adjusted Saturation Flow Rate (s), veh/h/ln 1810 1653 1810 1756 1810 1900 1766 1810 1900 1887 0.5 2.7 2.6 2.5 0.6 3.5 3.6 0.3 3.4 3.4 Queue Service Time (g_s), s Cycle Queue Clearance Time (q c), s 0.5 2.7 2.6 2.5 0.6 3.5 3.6 0.3 3.4 3.4 Green Ratio (g/C) 0.12 0.09 0.17 0.15 0.43 0.41 0.41 0.40 0.38 0.38 Capacity (c), veh/h 263 157 327 259 549 774 719 489 731 726 Volume-to-Capacity Ratio (X) 0.067 0.506 0.277 0.314 0.060 0.220 0.227 0.027 0.220 0.221 Back of Queue (Q), ft/ln (95 th percentile) 9.3 46.8 46.5 43.5 9.8 63.5 61.4 4.2 62.9 62.8 Back of Queue (Q), veh/ln (95 th percentile) 0.4 1.9 1.9 1.7 0.4 2.5 2.5 0.2 2.5 2.5 Queue Storage Ratio (RQ) (95 th percentile) 0.10 0.33 0.47 0.27 0.06 0.13 0.12 0.03 0.13 0.13 10.9 Uniform Delay (d 1), s/veh 23.5 25.8 21.7 22.9 10.1 11.6 11.6 12.4 12.4 Incremental Delay (d 2), s/veh 0.0 0.9 0.2 0.3 0.0 0.7 0.7 0.0 0.7 0.7 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 23.5 26.8 21.8 23.1 10.1 12.2 12.4 10.9 13.1 13.1 Level of Service (LOS) С С С С В В В В В В 26.2 С 22.4 С 12.1 В 13.0 В Approach Delay, s/veh / LOS Intersection Delay, s/veh / LOS 15.7 В **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.29 В 2.28 В 1.89 1.89 В В Bicycle LOS Score / LOS 0.65 Α 0.77 Α 0.79 Α 0.76 Α

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	FTG	Intersection	Pantall Rd and N. Access								
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN								
Date Performed	Sept 2018	East/West Street	Northern Project Access								
Analysis Year	2020	North/South Street	Pantall Road								
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.90								
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25								
Project Description	10886 (Total)										

Lanes



Approach		Eastb	ound			Westk	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						2		18			59	3		21	54	
Percent Heavy Vehicles (%)						0		0						0		
Proportion Time Blocked																
Percent Grade (%)						()									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						7.1		6.2						4.1		
Critical Headway (sec)						6.40		6.20						4.10		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.50		3.30						2.20		
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)							22							23		
Capacity, c (veh/h)							978							1545		
v/c Ratio							0.02							0.02		
95% Queue Length, Q ₉₅ (veh)							0.1							0.0		
Control Delay (s/veh)							8.8							7.4		
Level of Service (LOS)							А							А		
Approach Delay (s/veh)					8.8							2.1				
Approach LOS						A										

Generated: 9/26/2018 10:17:12 PM

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	FTG	Intersection	Pantall Rd and S. Access								
Agency/Co.	FTG	Jurisdiction	Thompson's Station, TN								
Date Performed	Sept 2018	East/West Street	Southern Project Access								
Analysis Year	2020	North/South Street	Pantall Road								
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.90								
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25								
Project Description	10886 (Total)										

Lanes

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						11		13			49	12		15	41	
Percent Heavy Vehicles (%)						0		0						0		
Proportion Time Blocked																
Percent Grade (%)		0														
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up Headways																
Base Critical Headway (sec)						7.1		6.2						4.1		
Critical Headway (sec)						6.40		6.20						4.10		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.50		3.30						2.20		
Delay, Queue Length, and	d Leve	l of S	ervice													
Flow Rate, v (veh/h)							27							17		
Capacity, c (veh/h)							929							1546		
v/c Ratio							0.03							0.01		
95% Queue Length, Q ₉₅ (veh)							0.1							0.0		
Control Delay (s/veh)							9.0							7.4		
Level of Service (LOS)							Α							А		
Approach Delay (s/veh)						9.0							2.0			
Approach LOS						А										

Generated: 9/26/2018 10:17:50 PM

APPENDIX C TRIP GENERATION

TRIP GENERATION CALCULATIONS - Single-family Homes

The following calculations are based on the data compiled for ITE Land Use Code 210.

Average Daily Traffic

$$Ln(T) = 0.92 Ln(X) + 2.71$$

 $Ln(T) = 0.92 Ln(92) + 2.71$
 $T = 962$ vehicles

Enter =
$$0.50 (962)$$
 = 481 vehicles
Exit = $0.50 (962)$ = 481 vehicles

AM traffic during peak hour of adjacent street

$$T = 0.71 (X) + 4.80$$

 $T = 0.71 (87) + 4.80$
 $T = 71$ vehicles

Enter =
$$0.25$$
 (71) = 18 vehicles
Exit = 0.75 (71) = 53 vehicles

PM traffic during peak hour of adjacent street

$$Ln(T) = 0.96 Ln(X) + 0.20$$

 $Ln(T) = 0.96 Ln(87) + 0.20$
 $T = 94$ vehicles

Enter =
$$0.63 (94)$$
 = 59 vehicles
Exit = $0.37 (94)$ = 35 vehicles

APPENDIX D RELEVANT PAGES FROM NCHRP REPORT 457: ENGINEERING STUDY GUIDE FOR EVALUATING INTERSECTION IMPROVEMENTS

ACHRP REPORT 457

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Evaluating Intersection Improvements: An Engineering Study Guide

TRANSPORTATION RESEARCH BOARD

NATIONAL RESEARCH COUNCIL

can also indirectly reduce the delay to the left-turn or through movements by lessening their need to compete for service with the right-turn movement.

One disadvantage of adding a lane to the minor-road approach is that it may require reallocating the existing pavement or widening of the approach cross section. Sometimes the pavement width needed for the additional lane is available within the existing roadway cross section. In this instance, the only impact is a reallocation of the paved surface through modification of the pavement markings. However, in downtown settings this reallocation may require the removal of some curb parking stalls and can affect adjacent business significantly. Occasionally, the cross section must be widened to provide for the additional lane. If the needed lane width can be provided within the available right-of-way, the cost may be limited to that of construction. However, if additional right-of-way is needed, the costs of acquiring this property in urban settings can be high.

Guidance. The literature does not offer guidance regarding conditions where a second approach lane would benefit from the operation of a minor-road approach. However, the procedures in Chapter 17 of the *Highway Capacity Manual 2000 (15)* can be used to identify major- and minor- road volume combinations that would benefit operationally from the provision of a second approach lane or bay. Bonneson and Fontaine (20) developed Figure 2-4 using these procedures and an assumed upper limit of 0.7 for the shared-lane, minor-road volume-to-capacity ratio.

Application. Figure 2-4 indicates the conditions that may justify the use of two approach lanes. Use of the information in this figure requires two types of data:

- 1. Major-road approach volume for the peak hour of the average day and
- 2. Minor-road turn movement volume for the peak hour of the average day (used to compute right-turn percentage).

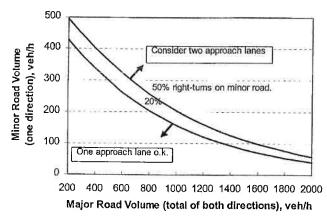


Figure 2-4. Guideline for determining minor-road approach geometry at two-way stop-controlled intersections,

Figure 2-4 would be used once for each minor-road approach to the intersection. The appropriate trend line would be identified on the basis of the percentage of right-turns on the subject minor-road approach. If the volume combination for the major and minor roads intersects above or to the right of this trend line, a second traffic lane should be considered for the subject minor-road approach. If a bay is selected for addition to the intersection, it should be long enough to store vehicles 95 percent of the time (i.e., the bay should not overflow more than 5 percent of the time). Techniques for estimating the 95th percentile storage length are provided in the section, Increase the Length of the Turn Bay.

Add a Left-Turn Bay on the Major Road

Introduction. Provision of a left-turn bay on the major road to a two-way stop-controlled intersection can significantly improve operations and safety at the intersection. A left-turn bay effectively separates those vehicles that are slowing or stopped to turn from those vehicles in through traffic lanes. This separation minimizes turn-related crashes and eliminates unnecessary delay to through vehicles. Data reported by Neuman (21) indicate that the crash rate for unsignalized intersections can be reduced by 35 to 75 percent through the provision of a left-turn bay.

One disadvantage of adding a bay to the major-road approach is that it may require reallocating the existing pavement or widening of the approach cross section. Sometimes the pavement width needed for the additional lane is available within the existing roadway cross section. However, in downtown settings this reallocation may require the removal of some curb parking stalls and can affect adjacent business significantly. Occasionally, the cross section must be widened to provide for the turn bay. If the needed width can be provided within the available right-of-way, the cost may be limited to that of construction. However, if additional right-of-way is needed, the costs of acquiring this property in urban settings can be high.

Guidance. Neuman (21) suggests that the following guidelines should be used to determine when to provide a left-turn bay on the major road of a two-way stop-controlled intersection:

- 1. A left-turn lane should be considered at any median crossover on a divided, high-speed road.
- 2. A left-turn lane should be provided on the unstopped approach of a high-speed rural highway when it intersects with other arterials or collectors.
- 3. A left-turn lane is recommended on the unstopped approach of any intersection when the combination of intersection volumes intersect above or to the right of the appropriate trend line shown in Figure 2-5.

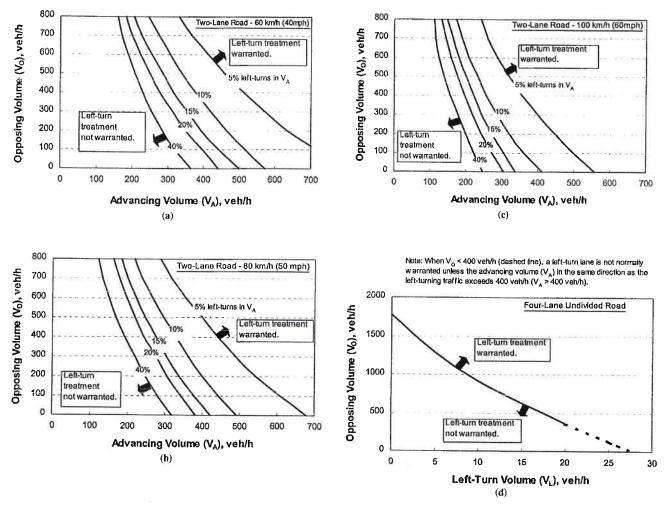


Figure 2-5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

Application. The guidance stated in the preceding section defines the conditions that may justify the provision of a left-turn bay. Application of this guidance requires two types of data:

- Major-road turn movement volume for the peak hour of the average day and
- 2. Major-road 85th percentile speed (posted speed can be substituted if data are unavailable).

Use of Figure 2-5 requires determination of the opposing volume, the advancing volume, and the operating speed. The opposing volume should include only the right-turn and through movements on the approach across from (and heading in the opposite direction of) the subject major-road approach. The advancing volume should include the left-turn, right-turn, and through movements on the subject approach. The operating speed can be estimated as the 85th percentile speed. If the operating speed does not coincide with 60, 80, or 100 km/h (i.e., 40, 50, or 60 mph), then interpolation can

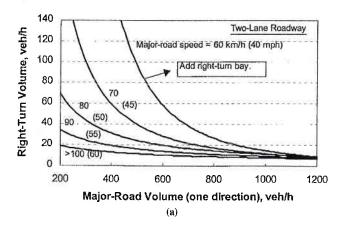
be used or, as a more conservative approach, the operating speed can be rounded up to the nearest speed for which a figure is provided.

In application, Figure 2-5 is used once for each major-road approach to the intersection. The appropriate trend line is identified on the basis of the percentage of left-turns on the subject major-road approach. If the advancing and opposing volume combination intersects above or to the right of this trend line, a left-turn bay should be considered for the subject approach. If a bay is included at the intersection, it should be long enough to store left-turn vehicles 99.5 percent of the time (i.e., the bay should not overflow more than 0.5 percent of the time). Techniques for estimating this storage length are provided in the section, Increase the Length of the Turn Bay.

Add a Right-Turn Bay on the Major Road

Introduction. Provision of a right-turn bay on the major road to a two-way stop-controlled intersection can signifi-

cantly improve operations and safety at the intersection. A right-turn bay effectively separates those vehicles that are slowing or stopped to turn from those vehicles in the through traffic lanes. This separation minimizes turn-related collisions (e.g., angle, rear-end, and same-direction-sideswipe) and eliminates unnecessary delay to through vehicles.


One disadvantage of adding a bay to the major-road approach is that it may require reallocating the existing pavement or widening of the approach cross section. Sometimes the pavement width needed for the additional lane is available within the existing roadway cross section. However, in downtown settings this reallocation may require the removal of some curb parking stalls and can affect adjacent business significantly. Occasionally, the cross section must be widened to provide for the turn bay. If the needed width can be provided within the available right-of-way, the cost may be limited to that of construction. However, if additional right-of-way is needed, the costs of acquiring this property in urban settings can be high.

Guidance. Hasan and Stokes (22) developed guidelines for determining when to provide a right-turn bay on the major road of a two-way stop-controlled intersection. These guidelines were based on an evaluation of the operating and collision costs associated with the right-turn maneuver relative to the cost of constructing a right-turn bay. The operating costs included those of road-user fuel and delay. Separate guidelines were developed for two-lane and four-lane roadways. These guidelines are shown in Figure 2-6.

Application. The guidance described in the preceding section defines conditions that may justify the provision of a right-turn bay. Application of this guidance requires two types of data:

- 1. Major-road turn movement volume for the peak hour of the average day and
- 2. Major-road 85th percentile speed (posted speed can be substituted if data are unavailable).

Figure 2-6 should be consulted once for each major-road approach. If the combination of major-road approach volume and right-turn volume intersects above or to the right of the trend line corresponding to the major-road operating speed, then a right-turn bay is a viable alternative.

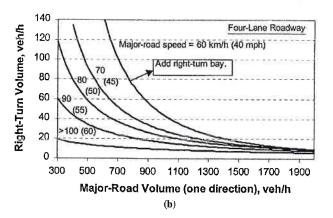


Figure 2-6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

Increase Length of Turn Bay

Introduction. Turn bay length can affect the safety and operation of the intersection approach significantly. This effect becomes more negative as the frequency with which vehicles exceed the available storage increases. Also, for unstopped approaches, this effect becomes more negative as more of the turning vehicle's deceleration occurs in the through lane, prior to the bay. The need to provide adequate storage length, deceleration length, or both is dependent on the type of approach control used and whether the vehicle is turning left or right. Table 2-13 identifies the appropriate bay

TABLE 2-13 Turn-bay length components at unsignalized intersections

Approach Control	Length Comp	onents
	Left-Turn Bay	Right-Turn Bay
Unstopped	Storage Length + Deceleration Length	Deceleration Length
Stopped	Storage Length	Storage Length

APPENDIX E RESULTS OF E-TRIMS QUERIES FOR CRASH DATA

Query: Crash County = WILLIAMSON

CR_CRASH.County = WILLIAMSON

CR_CRASH.Route = 0A561

CR_CRASH.Date of Crash > 7/31/2015 And CR_CRASH.Date of Crash <= 8/31/2018

BLM

Relation to First Junction	Relation to First Roadway	Urban or Rural	County	Route	Sp Cse	Co Seq	Ca	se Number	Location	Year Of Crash
0.594 NON_JUNCTION	On Roadway		WILLIAMSON	0A561	0-NONE		1	101318469	Along Roadway	2016
1.234 NON_JUNCTION	On Roadway		WILLIAMSON	0A561	0-NONE		1	101101923	Along Roadway	2016
1.188 NON_JUNCTION	Shoulder		WILLIAMSON	0A561	0-NONE		1	101106335	Along Roadway	2016
1.029 NON_JUNCTION	Roadside Left		WILLIAMSON	0A561	0-NONE		1	101967446	Along Roadway	2018
1.032 NON_JUNCTION	Roadside Right		WILLIAMSON	0A561	0-NONE		1	101392115	Along Roadway	2016
0.595 NON_JUNCTION			WILLIAMSON	0A561	0-NONE		1	101284801	Along Roadway	2016
0.794 NON_JUNCTION			WILLIAMSON	0A561	0-NONE		1	101329295	Along Roadway	2016
1.116 NON_JUNCTION			WILLIAMSON	0A561	0-NONE		1	101594264	Along Roadway	2017
1.188 NON_JUNCTION			WILLIAMSON	0A561	0-NONE		1	101178800	Along Roadway	2016
1.207 NON_JUNCTION			WILLIAMSON	0A561	0-NONE		1	102119145	Along Roadway	2018
1.213 NON_JUNCTION			WILLIAMSON	0A561	0-NONE		1	101569051	Along Roadway	2017
1.227 NON_JUNCTION			WILLIAMSON	0A561	0-NONE		1	100973705	Along Roadway	2015
1.231 NON_JUNCTION			WILLIAMSON	0A561	0-NONE		1	101806387	Along Roadway	2017
1.252 NON_JUNCTION			WILLIAMSON	0A561	0-NONE		1	102012753	Along Roadway	2018
0.598			WILLIAMSON	0A561	0-NONE		1	101096478	Along Roadway	2016

Date of Crash	Time of Crash Type of Crash	Total Killed Total I	nj Total Incap Injuries	Total Other Injuries	Total Vel	First Harmful Event	Manner of First Collision	Weather Cond	Light Conditions	Locate Type
8/2/2016	1145 Prop Damage (over)	0	0	0	0	2 Vehicle in Transport	SIDESWIPE, SAME DIR	Cloudy	Daylight	Automatic
2/8/2016	1445 Prop Damage (over)	0	0	0	0	2 Vehicle in Transport	REAR-END	Snow	Daylight	Automatic
2/15/2016	1730 Prop Damage (over)	0	0	0	0	1 Ditch	NO COLLISION W/ VEHICLE	Rain	Dark-Not Lighted	Automatic
4/5/2018	818 Prop Damage (over)	0	0	0	0	1 Ditch	NO COLLISION W/ VEHICLE	Clear	Daylight	Automatic
9/29/2016	645 Prop Damage (over)	0	0	0	0	1 Ditch	NO COLLISION W/ VEHICLE	Clear	Daylight	Automatic
7/13/2016	1022 Prop Damage (over)	0	0	0	0	2 Parked Motor Vehicle	SIDESWIPE, SAME DIR	Clear	Daylight	Automatic
8/16/2016	2100 Prop Damage (over)	0	0	0	0	1 Deer (Animal)	NO COLLISION W/ VEHICLE	Clear	Dark-Not Lighted	Automatic
3/26/2017	1100 Prop Damage (over)	0	0	0	0	2 Vehicle in Transport	REAR-END	Cloudy	Daylight	Automatic
4/21/2016	1540 Prop Damage (over)	0	0	0	0	3 Vehicle in Transport	REAR-END	Rain	Daylight	Automatic
8/22/2018	1707 Prop Damage (over)	0	0	0	0	3 Vehicle in Transport	REAR-END	Clear	Daylight	Automatic
2/28/2017	1800 Prop Damage (over)	0	0	0	0	1 Deer (Animal)	NO COLLISION W/ VEHICLE	Rain	Dark-Not Lighted	Automatic
10/2/2015	1635 Prop Damage (over)	0	0	0	0	2 Vehicle in Transport	REAR-END	Rain	Daylight	Automatic
10/27/2017	2130 Prop Damage (over)	0	0	0	0	1 Ditch	NO COLLISION W/ VEHICLE	Rain	Dark-Not Lighted	Automatic
5/15/2018	1835 Prop Damage (over)	0	0	0	0	2 Vehicle in Transport	ANGLE	Clear	Daylight	Automatic
1/30/2016	1213 Prop Damage (under)	0	0	0	0	2				Automatic

Query: Crash County = WILLIAMSON
CR_CRASH.County = WILLIAMSON
CR_CRASH.Route = 0A306

CR_CRASH.Date of Crash > 8/1/2015 And CR_CRASH.Date of Crash <= 8/31/2018 RI M

Relation to First Junction	Relation to First Roadway	Urban or Rural	County	Route	Sp Cse	Co Seq	Ca	se Number	Location	Year Of Crash
0.003 NON_JUNCTION	On Roadway		WILLIAMSON	0A306	0-NONE		1	101939497	Along Roadway	2018
0.003 NON_JUNCTION	On Roadway		WILLIAMSON	0A306	0-NONE		1	102031476	Along Roadway	2018
1.471 NON_JUNCTION	On Roadway		WILLIAMSON	0A306	0-NONE		1	101808758	Along Roadway	2017
1.909 NON_JUNCTION	On Roadway		WILLIAMSON	0A306	0-NONE		1	101180947	Along Roadway	2016
2.006 NON_JUNCTION	On Roadway		WILLIAMSON	0A306	0-NONE		1	101813152	Along Roadway	2017
2.332 NON_JUNCTION	Shoulder		WILLIAMSON	0A306	0-NONE		1	101406094	Along Roadway	2016
1.184 NON_JUNCTION	Roadside Left		WILLIAMSON	0A306	0-NONE		1	101388274	Along Roadway	2016
1.394 NON_JUNCTION	Roadside Left		WILLIAMSON	0A306	0-NONE		1	101506729	Along Roadway	2017
2.319 NON_JUNCTION	Roadside Left		WILLIAMSON	0A306	0-NONE		1	101828121	Along Roadway	2017
2.323 NON_JUNCTION	Roadside Left		WILLIAMSON	0A306	0-NONE		1	101664340	Along Roadway	2017
2.409 NON_JUNCTION	Roadside Left		WILLIAMSON	0A306	0-NONE		1	101163679	Along Roadway	2016
0.026 NON_JUNCTION			WILLIAMSON	0A306	0-NONE		1	102004178	Along Roadway	2018
0.062 NON_JUNCTION			WILLIAMSON	0A306	0-NONE		1	101547938	Along Roadway	2017
0.476 NON_JUNCTION			WILLIAMSON	0A306	0-NONE		1	101497427	Along Roadway	2017
0.589 NON_JUNCTION			WILLIAMSON	0A306	0-NONE		1	101650734	Along Roadway	2017
0.982 NON_JUNCTION			WILLIAMSON	0A306	0-NONE		1	102042318	Along Roadway	2018
1.828 NON_JUNCTION			WILLIAMSON	0A306	0-NONE		1	101032969	Along Roadway	2015
1.472 INTERSECTION	On Roadway		WILLIAMSON	0A306	0-NONE		1	102036771	At an Intersection	2018
1.909 INTERSECTION RELATED	On Roadway		WILLIAMSON	0A306	0-NONE		1	101048143	At an Intersection	2015
1.909 DRIVEWAY, ALLEY ACCESS, ETC.			WILLIAMSON	0A306	0-NONE		1	101982156	At an Intersection	2018

Date of Crash	Time of Crash Type of Crash	Total Killed To	otal Inj Tot	al Incap Injuries Total Other Inju	ries Total Vel	n First Harmful Event	Manner of First Collision	Weather Cond	Light Conditions	Locate Type
3/10/2018	654 Prop Damage (over)	0	0	0	0	2 Vehicle in Transport	SIDESWIPE, OPP DIR	Cloudy	Daylight	Automatic
6/2/2018	2226 Prop Damage (over)	0	0	0	0	2 Vehicle in Transport	ANGLE	Cloudy	Dark-Not Lighted	Automatic
10/29/2017	1158 Suspected Minor Injury	0	1	0	1	2 Vehicle in Transport	REAR-END	Cloudy	Daylight	Automatic
4/24/2016	1258 Prop Damage (over)	0	0	0	0	2 Vehicle in Transport	ANGLE	Clear	Daylight	Automatic
11/2/2017	721 Prop Damage (over)	0	0	0	0	1 Deer (Animal)	NO COLLISION W/ VEHICLE	Cloudy	Daylight	Automatic
10/14/2016	1757 Suspected Minor Injury	0	3	0	3	1 Ditch	NO COLLISION W/ VEHICLE	Rain	Dark-Not Lighted	Automatic
9/23/2016	0 Prop Damage (over)	0	0	0	0	1 Deer (Animal)	NO COLLISION W/ VEHICLE	Clear	Dark-Not Lighted	Automatic
1/10/2017	1345 Fatal	1	1	0	1	1 Ditch	NO COLLISION W/ VEHICLE	Clear	Daylight	
11/16/2017	2017 Prop Damage (over)	0	0	0	0	1 Earth Embankment	NO COLLISION W/ VEHICLE	Clear	Dark-Not Lighted	Automatic
6/3/2017	1713 Suspected Minor Injury	0	1	0	1	1 Standing Tree	NO COLLISION W/ VEHICLE	Clear	Daylight	Automatic
4/13/2016	2215 Suspected Minor Injury	0	1	0	1	1 Earth Embankment	NO COLLISION W/ VEHICLE	Cloudy	Dark-Not Lighted	Automatic
5/3/2018	702 Prop Damage (over)	0	0	0	0	2 Vehicle in Transport	REAR-END	Clear	Daylight	Automatic
2/8/2017	728 Prop Damage (over)	0	0	0	0	2 Vehicle in Transport	REAR-END	Cloudy	Daylight	Automatic
1/6/2017	725 Prop Damage (over)	0	0	0	0	5 Vehicle in Transport	REAR-END	Snow	Daylight	Automatic
5/20/2017	1230 Prop Damage (over)	0	0	0	0	2 Vehicle in Transport	REAR-END	Clear	Daylight	Automatic
6/13/2018	2100 Prop Damage (over)	0	0	0	0	1 Other Animal	NO COLLISION W/ VEHICLE	Clear	DARK-UNKNOWN LIGHTING	Automatic
11/20/2015	35 Prop Damage (over)	0	0	0	0	1 Deer (Animal)	NO COLLISION W/ VEHICLE	Clear	Dark-Lighted	Automatic
6/8/2018	841 Prop Damage (over)	0	0	0	0	2 Vehicle in Transport	REAR-END	Clear	Daylight	Automatic
12/12/2015	1520 Prop Damage (over)	0	0	0	0	2 Vehicle in Transport	REAR-END	Cloudy	Daylight	Automatic
4/18/2018	1205 Prop Damage (over)	0	0	0	0	2 Vehicle in Transport	REAR-END	Cloudy	Daylight	Automatic

Query: Crash County = WILLIAMSON CR_CRASH.County = WILLIAMSON CR_CRASH.Route = 0A558 CR_CRASH.Date of Crash > 8/1/2015 And CR_CRASH.Date of Crash <= 7/31/2018

Relation to First Junction	Relation to First Roadway	Urban or Rural	County	Route	Sp Cse	Co Seq	Case Number	Location	Year Of Crash
1.068 NON_JUNCTION	On Roadway		WILLIAMSON	0A558	0-NONE		1 10169079	3 Along Roadway	2017
0.444 NON_JUNCTION	Roadside Right		WILLIAMSON	0A558	0-NONE		1 10112082	6 Along Roadway	2016
0.47 NON_JUNCTION	Roadside Right		WILLIAMSON	0A558	0-NONE		1 10209087	'3 Along Roadway	2018
0.618 NON_JUNCTION			WILLIAMSON	0A558	0-NONE		1 10160917	'3 Along Roadway	2017
1.217 NON_JUNCTION			WILLIAMSON	0A558	0-NONE		1 10130068	5 Along Roadway	2016
1.248 NON_JUNCTION			WILLIAMSON	0A558	0-NONE		1 10202237	'2 Along Roadway	2018

Date of Crash Ti	me of Crash Type of Crash	Total Killed	Total Inj	Total Incap Injuries	Total Other Injuries	Total Ve	h First Harmful Event	Manner of First Collision	Weather Cond	Light Conditions	Locate Type
6/30/2017	2100 Suspected Minor Injury	0	1	1	0	1	1 Paved Surface-Irregular	NO COLLISION W/ VEHICLE	Cloudy	Dark-Not Lighted	
2/21/2016	O Suspected Serious Injury	0	2	2	2	0	1 Standing Tree	NO COLLISION W/ VEHICLE	Rain	Dark-Not Lighted	Automatic
7/27/2018	1055 Prop Damage (over)	0	()	0	0	1 Standing Tree	NO COLLISION W/ VEHICLE	Clear	Daylight	Automatic
4/7/2017	1900 Prop Damage (over)	0	()	0	0	1 Deer (Animal)	NO COLLISION W/ VEHICLE	Clear	Dusk	Automatic
7/22/2016	1041 Prop Damage (over)	0	()	0	0	2 Vehicle in Transport	SIDESWIPE, SAME DIR	Cloudy	Daylight	Automatic
5/25/2018	1635 Prop Damage (over)	0	()	0	0	2 Vehicle in Transport	REAR-END	Rain	Daylight	Automatic

Query: Crash County = WILLIAMSON

CR_CRASH.County = WILLIAMSON CR_CRASH.Route = 01928

CR_CRASH.Log Mile > 1.000 And CR_CRASH.Log Mile <= 3.600

CR_CRASH.Date of Crash > 7/31/2015 And CR_CRASH.Date of Crash <= 8/31/2018

BLM	Relation to First Junction	Relation to First Roadway	Urban or Rural	County	Route	Sp Cse	Co Seq	Case Number	Location	Year Of Crash
1.255	NON_JUNCTION	On Roadway		WILLIAMSON	01928	0-NONE	1	101466439	Along Roadway	2016
2.188	NON_JUNCTION	On Roadway		WILLIAMSON	01928	0-NONE	1	101951025	Along Roadway	2018
2.244	NON_JUNCTION	On Roadway		WILLIAMSON	01928	0-NONE	1	101623510	Along Roadway	2017
2.331	NON_JUNCTION	On Roadway		WILLIAMSON	01928	0-NONE	1	101070821	Along Roadway	2015
2.586	NON_JUNCTION	On Roadway		WILLIAMSON	01928	0-NONE	1	101069340	Along Roadway	2015
2.88	NON_JUNCTION	On Roadway		WILLIAMSON	01928	0-NONE	1	101650732	Along Roadway	2017
1.318	NON_JUNCTION	Shoulder		WILLIAMSON	01928	0-NONE	1	101317654	Along Roadway	2016
1.336	NON_JUNCTION	Shoulder		WILLIAMSON	01928	0-NONE	1	101128325	Along Roadway	2016
1.562	NON_JUNCTION	Roadside Left		WILLIAMSON	01928	0-NONE	1	101316995	Along Roadway	2016
3.236	NON_JUNCTION	Roadside Left		WILLIAMSON	01928	0-NONE	1	101869464	Along Roadway	2017
1.757	NON_JUNCTION	Roadside Right		WILLIAMSON	01928	0-NONE	1	102041314	Along Roadway	2018
1.899	NON_JUNCTION	Roadside Right		WILLIAMSON	01928	0-NONE	1	101954466	Along Roadway	2018
2.843	NON_JUNCTION	Roadside Right		WILLIAMSON	01928	0-NONE	1	101399602	Along Roadway	2016
3.493	NON_JUNCTION	Roadside Right		WILLIAMSON	01928	0-NONE	1	101702534	Along Roadway	2017
1.785	NON_JUNCTION			WILLIAMSON	01928	0-NONE	1	101191011	Along Roadway	2016
1.903	NON_JUNCTION			WILLIAMSON	01928	0-NONE	1	101238467	At an Intersection	2016
1.903	NON_JUNCTION			WILLIAMSON	01928	0-NONE	1	102111784	At an Intersection	2018
1.991	NON_JUNCTION			WILLIAMSON	01928	0-NONE	1	102107094	Along Roadway	2018
2.13	NON_JUNCTION			WILLIAMSON	01928	0-NONE	1	101420867	At an Intersection	2016
2.151	NON_JUNCTION			WILLIAMSON	01928	0-NONE	1	101161705	Along Roadway	2016
2.183	NON_JUNCTION			WILLIAMSON	01928	0-NONE	1	101618726	Along Roadway	2017
2.896	NON_JUNCTION			WILLIAMSON	01928	0-NONE	1	101183688	Along Roadway	2016
3.075	NON_JUNCTION			WILLIAMSON	01928	0-NONE	1	101406994	Along Roadway	2016
3.571	NON_JUNCTION			WILLIAMSON	01928	0-NONE	1	101365129	Along Roadway	2016
1.903	INTERSECTION	On Roadway		WILLIAMSON	01928	0-NONE	1	101157512	At an Intersection	2016
1.903	INTERSECTION	On Roadway		WILLIAMSON	01928	0-NONE	1	101189592	At an Intersection	2016
1.903	INTERSECTION	On Roadway		WILLIAMSON	01928	0-NONE	1	101746732	At an Intersection	2017
1.159	INTERSECTION			WILLIAMSON	01928	0-NONE	1	101843072	At an Intersection	2017
1.903	INTERSECTION			WILLIAMSON	01928	0-NONE	1	101235325	At an Intersection	2016
1.903	INTERSECTION			WILLIAMSON	01928	0-NONE	1	101486988	At an Intersection	2016
1.903	INTERSECTION			WILLIAMSON	01928	0-NONE	1	101725250	At an Intersection	2017
2.13	INTERSECTION			WILLIAMSON	01928	0-NONE	1	102027076	At an Intersection	2018
2.89	INTERSECTION			WILLIAMSON	01928	0-NONE	1	101619412	At an Intersection	2017
1.903	INTERSECTION RELATED	On Roadway		WILLIAMSON	01928	0-NONE	1	101101058	At an Intersection	2016
1.903	INTERSECTION RELATED			WILLIAMSON	01928	0-NONE	1	101943710	At an Intersection	2018
2.13	INTERSECTION RELATED			WILLIAMSON	01928	0-NONE	1	101065689	At an Intersection	2015
2.13	INTERSECTION RELATED			WILLIAMSON	01928	0-NONE	1	101098247	At an Intersection	2016
1.466	DRIVEWAY, ALLEY ACCESS, ETC.	On Roadway		WILLIAMSON	01928	0-NONE	1	101070340	Along Roadway	2015
1.911	OTHER	Outside Trafficway		WILLIAMSON	01928	0-NONE	1	101079128	Along Roadway	2016

Date of Crash	Time of Crash	Type of Crash	Total Killed	Total Inj	Total Incap Injuries	Total Other Injuries	Total Veh	First Harmful Event	Manner of First Collision	Weather Cond	Light Conditions	Locate Type
11/30/2016	1601	Suspected Minor Injury	0	2	0	2	3	Vehicle in Transport	SIDESWIPE, OPP DIR	Clear	Daylight	
3/20/2018	1405	Prop Damage (over)	0	0	0	0	2	Vehicle in Transport	ANGLE	Rain	Daylight	Automatic
4/23/2017	1420	Prop Damage (over)	0	0	0	0	2	Vehicle in Transport	SIDESWIPE, OPP DIR	Cloudy	Daylight	Automatic
12/28/2015	1042	Suspected Minor Injury	0	1	0	1	1	Overturn	NO COLLISION W/ VEHICLE	Rain	Daylight	Automatic
12/29/2015	1735	Prop Damage (over)	0	0	0	0	2	Vehicle in Transport	REAR-END	Clear	Dark-Not Lighted	Automatic
5/20/2017	1110	Prop Damage (over)	0	0	0	0	3	Vehicle in Transport	REAR-END	Clear	Daylight	Automatic
7/28/2016	1852	Suspected Minor Injury	0	1	0	1	1	Ditch	NO COLLISION W/ VEHICLE	Clear	Daylight	Automatic
3/5/2016	1541	Suspected Minor Injury	0	1	0	1	1	Ditch	NO COLLISION W/ VEHICLE	Clear	Daylight	Automatic
7/30/2016	1856	Prop Damage (over)	0	0	0	0	1	Fence	NO COLLISION W/ VEHICLE	Clear	Daylight	Automatic
12/20/2017	2012	Suspected Minor Injury	0	1	0	1	1	Wall	NO COLLISION W/ VEHICLE	Clear	Dark-Not Lighted	Automatic
6/11/2018	2140	Prop Damage (over)	0	0	0	0	1	Ditch	NO COLLISION W/ VEHICLE	Clear	Dark-Not Lighted	Automatic
3/24/2018	737	Prop Damage (over)	0	0	0	0	1	Ditch	NO COLLISION W/ VEHICLE	Cloudy	Daylight	Automatic
10/3/2016	1300	Suspected Minor Injury	0	1	0	1	1	Culvert	NO COLLISION W/ VEHICLE	Clear	Daylight	Automatic
7/13/2017	1504	Prop Damage (over)	0	0	0	0	1	Mail Box	NO COLLISION W/ VEHICLE	Clear	Daylight	Automatic
5/9/2016	0	Prop Damage (over)	0	0	0	0	1	Deer (Animal)	NO COLLISION W/ VEHICLE	Clear	Dark-Not Lighted	Automatic
6/3/2016	1759	Prop Damage (over)	0	0	0	0	2	Vehicle in Transport	ANGLE	Rain	Daylight	Automatic
8/16/2018	1340	Prop Damage (over)	0	0	0	0	2	Vehicle in Transport	REAR-END	Rain	Daylight	Automatic
8/11/2018	712	Prop Damage (over)	0	0	0	0	2	Vehicle in Transport	ANGLE	Clear	Daylight	Automatic
10/23/2016	1232	Prop Damage (over)	0	0	0	0	2	Vehicle in Transport	SIDESWIPE, SAME DIR	Clear	Daylight	Automatic
4/10/2016	1709	Prop Damage (over)	0	0	0	0	1	Thrown or Falling Object	NO COLLISION W/ VEHICLE	Clear	Daylight	Automatic
4/18/2017	1626	Prop Damage (over)	0	0	0	0	2	Vehicle in Transport	REAR-END	Rain	Daylight	Automatic
4/28/2016	1805	Prop Damage (over)	0	0	0	0	2	Vehicle in Transport	ANGLE	Clear	Daylight	Automatic
10/18/2016	2200	Prop Damage (over)	0	0	0	0	1	Deer (Animal)	NO COLLISION W/ VEHICLE	Clear	Dark-Not Lighted	Automatic
9/20/2016	645	Prop Damage (over)	0	0	0	0	2	Vehicle in Transport	REAR-END	Clear	Daylight	Automatic
4/4/2016	1645	Suspected Minor Injury	0	1	0	1	1	Other Non-Collision	NO COLLISION W/ VEHICLE	Clear	Daylight	Automatic
5/6/2016	1615	Suspected Minor Injury	0	1	0	1	2	Vehicle in Transport	ANGLE	Clear	Daylight	Automatic
8/30/2017	1613	Suspected Minor Injury	0	1	0	1	4	Vehicle in Transport	REAR-END	Cloudy	Daylight	Automatic
11/29/2017	2024	Prop Damage (over)	0	0	0	0	2	Vehicle in Transport	REAR-END	Clear	Dark-Not Lighted	Automatic
5/29/2016	1550	Prop Damage (over)	0	0	0	0	2	Vehicle in Transport	ANGLE	Clear	Daylight	Automatic
12/24/2016	1744	Prop Damage (over)	0	0	0	0	2	Vehicle in Transport	REAR-END	Rain	Dark-Not Lighted	Automatic
8/4/2017	954	Prop Damage (over)	0	0	0	0	2	Vehicle in Transport	ANGLE	Rain	Daylight	Automatic
5/29/2018	1600	Prop Damage (over)	0	0	0	0	2	Vehicle in Transport	REAR-END	Rain	Daylight	Automatic
4/18/2017	646	Prop Damage (over)	0	0	0	0	1	Utility Pole	NO COLLISION W/ VEHICLE	Cloudy	Daylight	Automatic
2/5/2016	1741	Prop Damage (over)	0	0	0	0	2	Vehicle in Transport	ANGLE	Cloudy	Dark-Not Lighted	Automatic
3/13/2018	1631	Prop Damage (over)	0	0	0	0	2	Vehicle in Transport	REAR-END	Clear	Daylight	Automatic
12/23/2015	1135	Prop Damage (over)	0	0	0	0	2	Vehicle in Transport	SIDESWIPE, OPP DIR	Cloudy	Daylight	Automatic
1/27/2016	1538	Prop Damage (over)	0	0	0	0	2	Vehicle in Transport	REAR-END	Clear	Daylight	Automatic
12/29/2015	1213	Suspected Minor Injury	0	2	0	2	3	Vehicle in Transport	HEAD-ON	Clear	Daylight	Automatic
1/17/2016	1510	Suspected Serious Injury	0	1	1	0	2	Ditch	NO COLLISION W/ VEHICLE	Clear	Daylight	Automatic

615 Third Avenue South, Suite 100 Nashville, Tennessee 37210

Phone: 615.252.4373 | Fax: 615.255.6572

www.bargedesign.com

MEMORANDUM

To: Wendy Deats Town of Thompson's Station

From: Peter Kauffmann, PE, PTOE Barge Design Solutions

Jonathan Smith, PE Barge Design Solutions

Date: October 18, 2018

Project ID: 36727-08

Re: Review of REVISED Littlebury/Pantall Road Traffic Impact Study

in Thompson's Station, Tennessee (submitted October 17, 2018)

Overview

Barge Design Solutions has completed its review of a Traffic Impact Study (TIS) submitted in support of the Littlebury/Pantall Road project in Thompson's Station, TN. This study, dated submitted on October 17, 2018, concerns the proposed construction of 92 single-family residential homes to the east of Pantall Road.

The Traffic Engineer for this project was Fischbach Transportation Group (FTG). Scoping discussions regarding this project were conducted between October 2017 and January 2018. This document is an update to the project's original TIS, which was prepared in January 2018 and submitted to the Town by the Applicant on July 20, 2018, in response to comments prepared by Barge on behalf of the Town dated August 24, 2018.

This review finds that the revised TIS generally addresses all methodology-related comments and should be accepted by the Town. The mitigation measures proposed in the TIS are expected to successfully address all identified impacts from site-generated traffic and should be implemented.

Specifically, the Applicant has agreed to contribute \$20,000 towards intersection improvements at the intersection of Thompson's Station Road & Pantall Road. The Applicant and their Traffic Engineer have recommended that a turn lane be added to the southbound approach at this location to create separate left- and right-turn lanes. This review concurs with the recommended mitigation, finding that this proposal is a suitable near-term solution that should improve traffic operations and safety and fully mitigate impacts from site traffic at this location.

The Town should contact our office if there are any questions about these findings.

Summary of TIS Recommendations (revised)

The original TIS had made two traffic-related recommendations, summarized in the previous comment memorandum dated August 24, 2018:

- A. <u>Site Access</u>: The revised TIS retains the same site access recommendations from the original study, namely to establish two site access points with dedicated inbound left-turn lanes
- B. <u>Widen Pantall Road (removed)</u>: The TIS no longer proposes to widen Pantall Road, which is in keeping with Comment 9 from the August 2018 memorandum since the Town recently conducted widening on Pantall Road in spring 2017.

This review finds that both of these items are appropriate. However, the Town should confirm that the new plans include 30' ROW dedication to comply with Town standard for Collector roadways as was discussed in Recommendation Comment B2 of the August 2018 comments.

The revised TIS also includes an additional recommendation to address impacts at the intersection of Thompson's Station Road & Pantall Road. The July 2018 TIS had shown impacts from increased delay at this location due to the addition of site-generated traffic but did not recommend improvements to address these issues. This omission was cited in Recommendation Comment C2 in the August 2018 comments. To address this comment, the October 2018 TIS includes the following language:

A short-term improvement would be the construction of a separate southbound left turn lane. This turn lane would help to reduce the delays for southbound left and right turns. To date, no estimate of probable cost has been prepared for this turn lane. However, it would be reasonable to assume that this turn lane could include approximately 300 linear feet of grading and pavement. At \$100 per linear foot, this improvement would cost approximately \$30,000. The developer of the Littlebury project has agreed to contribute one-third the cost of this improvement, or \$10,000. Therefore, this contribution should be made a condition of approval for the Littlebury residential project. (page 60)

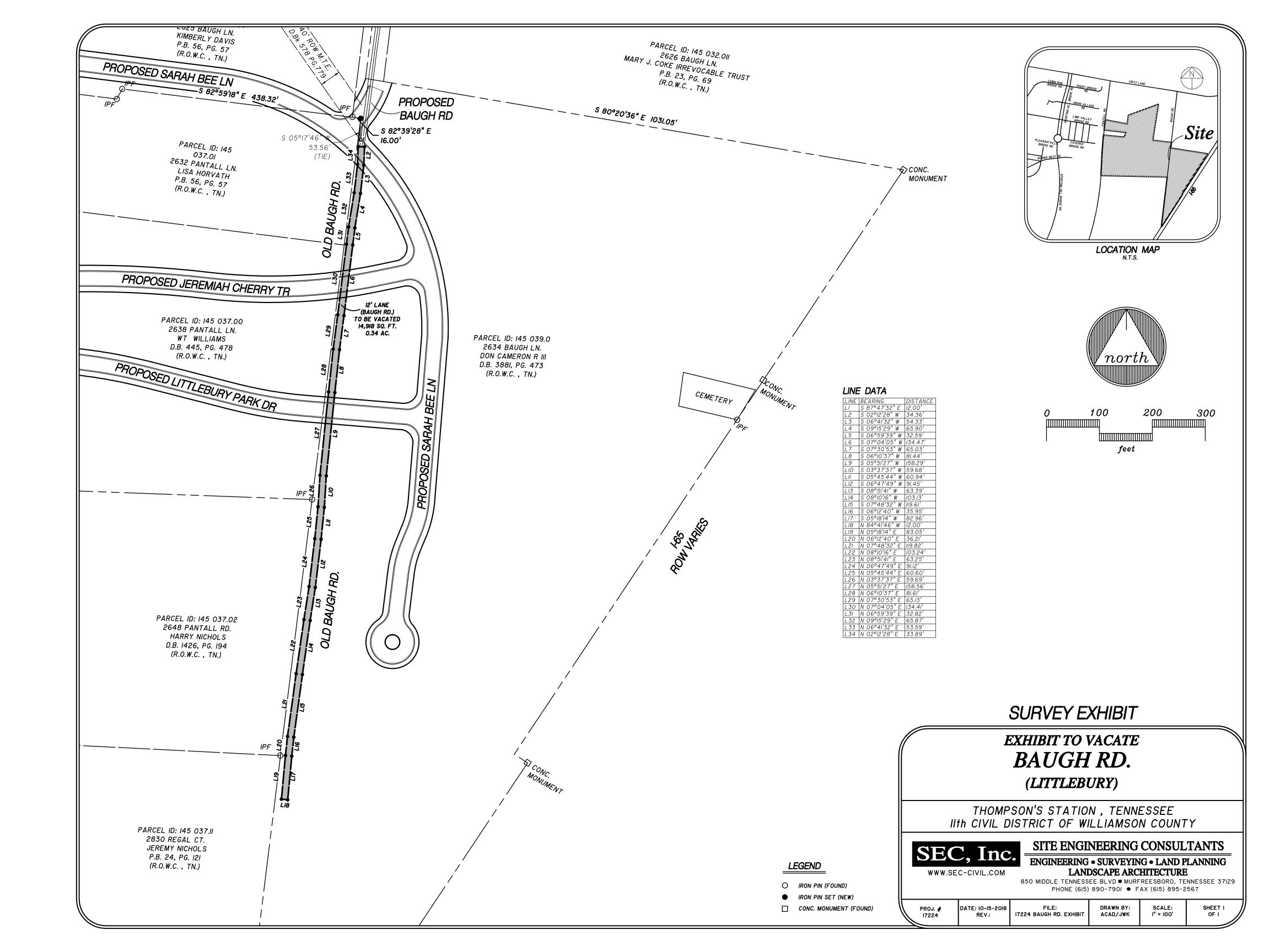
Subsequent discussions with the Applicant have revised the Applicant's contribution to \$20,000 to increase the development's share of the improvement costs and to provide a contingency for construction cost overruns. This review finds that the recommendation to add a turn lane along the southbound approach is a reasonable proposal to address impacts at the intersection of Thompson's Station Road & Pantall Road in the immediate future, and that the proposed \$20,000 contribution is appropriate given the level of site traffic impacts along the Pantall Road corridor.

This intersection currently handles a high volume of southbound right-turning traffic, particularly during PM peak periods, and providing separate left- and right-turn lanes should reduce delays and improve safety at the intersection. Preliminary traffic modeling confirms that the improved intersection with a southbound left-turn lane is projected to operate at an acceptable level of service in the near-term, generally performing equal to or better than the existing intersection even with the addition of site trips.

At some point in the future, traffic volumes from other developments and generally traffic growth in the region are expected to increase delays at this intersection to a level where an intersection upgrade would be required. This finding was presented in the 2015 *Town of Thompson's Station*

Page 2 October 18, 2018

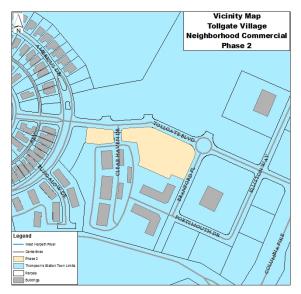
Traffic Impact Study Comprehensive Update and was confirmed by this TIS, which recommended that the intersection eventually be converted to signal or roundabout control once the region is sufficiently built out. However, the Applicant's proposal to add a southbound turn lane is sufficient to mitigate impacts from the Littlebury development specifically, and as such the Applicant should not be required to contribute additional funds towards the eventual intersection upgrade.


Review of August 2018 Comments for Follow-Up

The revised TIS and subsequent discussions with the Applicant successfully address all comments that were included in the August 2018 memorandum:

- 1. New Development Program: Program increased to 92 units, matching included site plan
- 2. <u>Lack of Crash Data Analysis</u>: Exports from E-TRIMS are included. Further analysis by Barge indicates that historic crash rates along Pantall Road do not exceed statewide average rates
- 3. Signal Control at Thompson's Station Road & Buckner Lane: Corrected in revised study
- 4. Stop Control at Thompson's Station & Clayton Arnold Roads: Corrected in revised study
- 5. Background Traffic Volumes: Corrected in revised study
- 6. <u>Saturday Peak Demand</u>: The revised study conducted Saturday counts to address this comment analytically. No issues were found during Saturday periods
- 7. <u>Distribution of New School Trips</u>: The revised study conducted new AM/PM period counts to directly incorporate trips associated with the new school
- 8. <u>Unaddressed Impacts at Thompson's Station & Pantall Roads</u>: The Applicant has committed to contribute funds towards adding a southbound left-turn lane at this location
- 9. Pantall Road Widening: No longer recommended, in keeping with August 2018 comments
- 10. <u>Provisions for Baugh Road Connection</u>: Site plan now includes provisions for future connectivity

Page 3 October 18, 2018



Thompson's Station Planning Commission Staff Report –Item 2 (PP 2018-008) October 25, 2018

Preliminary plat for Phase 2A of the "Town Center" for Tollgate Village which consists of 27 lots.

PROJECT DESCRIPTION

A request to approve the preliminary plat for Phase 2A of "Town Center" within Tollgate Village to create 27 lots.

BACKGROUND

On August 28, 2017, the Planning Commission reviewed a preliminary plat for the creation of 59 lots was submitted for the creation of 59 lots for phase 2 (commercial section) of Tollgate Village. Staff cited concerns in the report related to the adequacy of the trip generation analysis, the amount of recorded open space and geotechnical had not been submitted for the project area. Therefore, the Planning Commission denied the request due to inadequate trip generation analysis and no geotechnical report for the site.

ANALYSIS

Preliminary Plat

The preliminary plat provides an analysis of the site's special features and the response to those features (LDO Section 5.4.3). This preliminary plat for phase 2A-Town Center includes the creation of 27 lots within a 3.28-acre site.

Zoning

The project is located within Tollgate Village which has two zoning designations. A portion of the site containing seven townhomes is located within the D3 zoning and the remaining portion of the project site is located within the NC (Neighborhood Commercial) zoning district. The D3 zone permits the development of single-family, townhomes and other residential land uses. The NC zone includes "neighborhood commercial activities, small scale businesses, and high intensity residential" (Section 1.2.7.b.iv.) which includes residential uses, such as townhomes, mixed use buildings and condominiums.

Lot Standards

The townhome lots will vary in size with a minimum of 20 feet for lot widths. Proposed setbacks are 10 feet for the front yard, 7.5 feet for the side yard and 20 feet for the rear yard with a minimum

of a 20-foot driveway. Any development of the lots will need to comply with the development standards set forth for the zoning designations.

Roadways

Tollgate Boulevard is complete and accepted by the Town and no additional roadways are proposed as part of this plat. Tollgate Boulevard has a sidewalk with landscape strip between the road and the sidewalk and pedestrian access is provided throughout the site to the civic and open space areas.

Access is proposed from the existing driveway on Tollgate Village Boulevard, however additional access will be proposed from Branford Place also.

Natural Resources

A natural resource map was submitted for the site which shows that no creeks, streams or other water bodies are present on site, no trees exist on site. A geotechnical report was submitted for the project site and all recommendations shall be adhered to during the construction of any development on site.

Traffic Improvements

Significant concerns were noted in the review of the original trip generation analysis. Therefore, after discussions with the Town's traffic engineer, a revised traffic study was submitted on Friday, October 12[,] 2018. The revised study was completed to collect current traffic count data, quantify existing traffic demand along Tollgate Boulevard, and update the expected future land uses within Tollgate Village.

Staff has forwarded the study to the Town's traffic engineer, however, there was not adequate time for a thorough review by the time of staff reports. Therefore, the traffic engineer will present their review of the traffic study at the Commission meeting.

Open Space

The open space required for the Tollgate Village subdivision is 120 acres of which all is recorded.

Sewer

The Tollgate Village development has approval for 943 sewer taps. The subdivision has a total commitment recorded or otherwise approved of 832 taps. With the total commitment of taps, the development has 111 taps remaining for the entire development including the outparcels that may not be owned by the MBSC developer. Staff recommends that any commitments to the owners of the outparcels be submitted to the Town. It should also be noted that phase 16 does have a preliminary plat approval which includes 105 taps. Staff anticipates that this plat will result in the need for 50 taps based on the site plan submitted for approval. Any future approvals shall be limited to the number of taps available.

RECOMMENDATION

Should the Planning Commission wish to approve the plat, Staff recommends the Planning Commission incorporate the following contingencies:

- 1. Prior to the approval of construction plans, all applicable codes and regulations shall be addressed to the satisfaction of the Town Engineer. Any corrections or issues with the drawings related to regulations may be subject to further Planning Commission review.
- 2. Prior to the approval of construction drawings, a drainage study shall be submitted to verify that storm water is managed adequately on site.
- 3. All landscape buffers shall be incorporated into any future site plan approvals and shall be installed and maintained in a healthy manner.

- 4. Any signage proposed for the subdivision shall comply requirements set forth within the Land Development Ordinance and shall be located within the open space and maintained by the homeowner's association.
- 5. All recommendations within the geotechnical report shall be adhered to during construction activities. Any new information or features not identified shall be subject to the review by a geotechnical engineer.
- 6. Any change of use or expansion of the project site shall conform to the requirements set forth within the Land Development Ordinance and shall be approved prior to the implementation of any changes to the project.
- 7. All future approvals for any development shall be subject to the availability of sewer taps.

ATTACHMENT

Preliminary Plat Traffic Study dated October 12, 2018

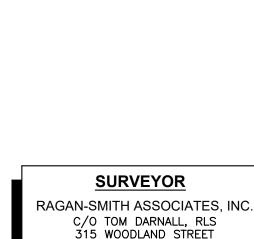
GENERAL NOTES

- 1. THE PURPOSE OF THIS PLAT IS TO CREATE 27 MIXED USE LOTS.
- 2. BEARINGS SHOWN HEREON ARE BASED ON THE TENNESSEE STATE PLANE COORDINATE SYSTEM OF 1983. GPS EQUIPMENT WAS USED DURING THE COURSE OF THE SURVEY ON THE SITE TO DETERMINE THE POSITION OF TWO CONTROL POINTS FOR ESTABLISHING THE BEARING BASE. THE EQUIPMENT USED: LEICA, MODEL GX 1230, DUAL FREQUENCY RECEIVER. THE TYPE OF SURVEY: NETWORK ADJUSTED REAL TIME KINEMATIC. CONTROL POINTS FOR BEARING BASE FOR PROJECT AND POOD LOCATION IMPROVEMENTS. AND ROAD LOCATION IMPROVEMENTS.
- 3. BY SCALED MAP LOCATION AND GRAPHIC PLOTTING ONLY, THIS PROPERTY LIES WITHIN FLOOD ZONE "X" (OTHER AREAS), AS DESIGNATED ON CURRENT FEDERAL EMERGENCY MANAGEMENT AGENCY MAPS NO. 47187C0335F, WITH AN EFFECTIVE DATE OF SEPTEMBER 29, 2006, WHICH MAKES UP A PART OF THE NATIONAL FLOOD INSURANCE ADMINISTRATION REPORT; COMMUNITY NO. 470424, PANEL NO. 0335, SUFFIX F, WHICH IS THE CURRENT FLOOD INSURANCE RATE MAP FOR THE COMMUNITY IN WHICH SAID PREMISES IS SITUATED. SAID MAP DEFINES ZONE "X" UNDER "OTHER AREAS" AS "AREAS DETERMINED TO BE OUTSIDE THE 0.2% ANNUAL CHANCE FLOODPLAIN."
- 4. THIS PROPERTY IS CURRENTLY ZONED NC (NEIGHBORHOOD COMMERCIAL) AND DC3 (HIGH INTENSITY RESIDENTIAL), PER THOMPSON'S STATION LAND DEVELOPMENT ORDINANCE, DATED JUNE 13, 2017.

NC SETBACK REQUIREME				D3 SETBACK REQUIREMENTS:	
PRIMARY FRONTAGE	-	12'	MAXIMUM	PRIMARY FRONTAGE - 10' MAXIMUM	
SECONDARY FRONTAGE	_	10'	MAXIMUM	SECONDARY FRONTAGE - 10' MAXIMUM	
SIDE LOT LINE				SIDE LOT LINE AGGREGATE — 15' TOTAL, 5' MINIMI	UM
REAR LOT LINE	_	5'	MINIMUM	REAR LOT LINE — 20' MINIMUM	

- 5. THIS SURVEYOR HAS NOT PHYSICALLY LOCATED THE UNDERGROUND UTILITIES. ABOVE GRADE AND UNDERGROUND UTILITIES SHOWN WERE TAKEN FROM VISIBLE APPURTENANCES, PUBLIC RECORDS, AND/OR MAPS PREPARED BY OTHERS. THE SURVEYOR MAKES NO GUARANTEE THAT THE UNDERGROUND UTILITIES SHOWN COMPRISE ALL SUCH UTILITIES IN THE AREA, EITHER IN SERVICE OR ABANDONED. THE SURVEYOR FURTHER DOES NOT WARRANT THAT THE UNDERGROUND UTILITIES SHOWN ARE IN THE EXACT LOCATION INDICATED. THEREFORE, RELIANCE UPON THE TYPE, SIZE AND LOCATION OF UTILITIES SHOWN SHOULD BE DONE SO WITH THIS CIRCUMSTANCE CONSIDERED. DETAILED VERIFICATION OF EXISTENCE, LOCATION AND DEPTH SHOULD ALSO BE MADE PRIOR TO ANY DECISION RELATIVE THERETO IS MADE. AVAILABILITY AND COST OF SERVICE SHOULD BE CONFIRMED WITH THE APPROPRIATE UTILITY COMPANY. IN TENNESSEE, IT IS A REQUIREMENT, PER "THE UNDERGROUND UTILITY DAMAGE PREVENTION ACT", THAT ANYONE WHO ENGAGES IN EXCAVATION MUST NOTIFY ALL KNOWN UNDERGROUND UTILITY OWNERS NO LESS THAN THREE (3) NOR MORE THAN TEN (10) WORKING DAYS PRIOR TO THE DATE OF THEIR INTENT TO EXCAVATE AND ALSO TO AVOID ANY POSSIBLE HAZARD OR CONFLICT. TENNESSEE ONE CALL, DIAL 811.
- 6. ELEVATIONS SHOWN HEREON ARE BASED ON NAVD 88. CONTOURS ARE AT TWO FOOT INTERVALS AND ARE BASED ON A FIELD RUN SURVEY BY RAGAN-SMITH ASSOCIATES ON JULY 12, 2016 USING RANDOM SPOT ELEVATIONS. CONTOURS WERE DERIVED USING SURFACE MODELING
- 7. ALL PUBLIC STREETS AND DRAINAGE STRUCTURES WITHIN THE RIGHTS-OF-WAY WILL BE MAINTAINED BY THE TOWN OF THOMPSON'S STATION.
- 8. SANITARY SEWER LINES AND STORM LINES SHOWN HEREON WERE TAKEN FROM A PRELIMINARY DESIGN FOR THIS SECTION. FINAL PLACEMENT OF UTILITIES WILL BE DEPICTED ON THE FINAL PLAT.
- 9. DOMESTIC WATER SUPPLY INFORMATION SHOWN HEREON IS BASED ON A PRELIMINARY DESIGN FOR THIS SECTION. FINAL PLACEMENT TO BE DESIGNED BY OTHERS AND INCLUDED ON THE FINAL PLAT. WATER TO BE PROVIDED BY H.B.&T.S.
- 10. THE RECORDING OF THE FINAL PLAT VOIDS, VACATES AND SUPERCEDES LOTS 3302 AND 3303 AND A PORTION OF LOT 3304 AS SHOWN ON THE FINAL PLAT ENTITLED "TOLLGATE VILLAGE, SECTION 33 (LOTS 3301-3304)AND REVISION TO SECTION 20 (LOT 20.6)" OF RECORD IN PLAT BOOK P60, PAGE 86, REGISTER'S OFFICE FOR WILLIAMSON COUNTY, TENNESSEE.
- 11. I HEREBY STATE THAT THIS SURVEY WAS DONE IN COMPLIANCE WITH THE CURRENT TENNESSEE MINIMUM STANDARDS OF PRACTICE AND THIS IS A CATEGORY I SURVEY AND THE RATIO OF PRECISION OF THE UNADJUSTED SURVEY IS 1:43,595.

DATE: <u>AUGUST 29, 2018</u> JOHN T. DARNALL, TN RLS #1571


LC	T AREA T	ABLE		
LOT	SQ. FT.±	ACRES±		
201	92,816	2.13		
202	2,997	0.07		
203	2,200	0.05		
204	2,200	0.05		
205	2,995	0.07		
206	4,060	0.09		
207	1,996	0.05		
209	1,622	0.04		
210	1,197	0.03		
211	1,197	0.03		
212	1,780	0.04		
213	1,780	0.04		
214	1,197	0.03		
215	1,631	0.04		
216	1,554	0.04		
217	1,152	0.03		
218	1,152	0.03		
219	1,687	0.04		
220	1,746	0.04		
221	1,192	0.03		
222	1,192	0.03		
223	1,192	0.03		
224	1,609	0.04		
225	2,654	0.06		
226	1,693	0.04		
227	2,585	0.06		

LEGE	<u>ND</u>		
O ^{IR(0)}	IRON ROD (OLD)	FO	FIBER OPTIC BOX
•	IRON ROD (NEW) (1/2" X 18" W/CAP STAMPED "RAGA SMITH & ASSOCIATES")	⊚ N <u>→</u>	IRRIGATION CONTROL VALVE SIGN
OPK(0)	•	—SA—	SANITARY SEWER LINE
©	PK NAIL (OLD) FIRE HYDRANT	E	ELECTRIC BOX
M	WATER VALVE	—w—	WATER LINE
W	WATER METER	—FM— - ※	FORCE MAIN LIGHT STANDARD
RCP ===	REINFORCED CONCRETE PIPE	<u>- 4-</u>	YARD LIGHT
0	SANITARY SEWER MANHOLE	P.U.D.E.	PUBLIC UTILITY AND DRAINAGEASEMENT
Oco	SEWER CLEAN-OUT	DUDAE	DUDUO LITUUTY DDAINAGE AN
	AREA DRAIN	P.U.D.A.E.	PUBLIC UTILITY, DRAINAGE AN ACCESS EASEMENT
	CATCH BASIN/CURB INLET	Р	TRANSFORMER PAD
(57)	STORM MANHOLE	R.O.W.C.T.	REGISTER'S OFFICE FOR WILLIAMSON COUNTY, TN

SIDEWALK

	CURVE TABLE									
CURVE	LENGTH	RADIUS	CENTRAL ANGLE	CHD BRG	CHORD	TANGENT				
C8	39.28'	25.00'	90°00'54"	S48*28'38"E	35.36'	25.01				
C9	39.27'	25.00'	90*00'00"	N41°31'49"E	35.36'	25.00				
C10	33.29'	70.00'	27*15'04"	S79°51'06"E	32.98'	16.97				
C11	117.81	75.00'	90'00'08"	S21°13'35"E	106.07	75.00				
C12	28.38'	25.00'	65*02'06"	S29*01'58"W	26.88'	15.94				
C13	10.89'	25.00'	24°57'54"	S74°01'58"W	10.81	5.53				
C14	85.26'	75.00'	65*08'05"	S33°39'28"E	80.74	47.90				
C15	32.55	75.00'	24°51'55"	S11°20'32"W	32.29	16.53				

	CURVE TABLE										
URVE	LENGTH	RADIUS	CENTRAL ANGLE	CHD BRG	CHORD	TANGENT					
C8	39.28'	25.00'	90°00'54"	S48°28'38"E	35.36'	25.01					
С9	39.27'	25.00'	90*00'00"	N41°31'49"E	35.36'	25.00					
C10	33.29'	70.00'	27*15'04"	S79°51'06"E	32.98'	16.97					
C11	117.81	75.00'	90*00'08"	S21°13'35"E	106.07	75.00					
C12	28.38'	25.00'	65*02'06"	S29'01'58"W	26.88'	15.94					
C13	10.89'	25.00'	24*57'54"	S74°01'58"W	10.81'	5.53					
C14	85.26'	75.00'	65*08'05"	S33°39'28"E	80.74	47.90					
C15	32.55'	75.00'	2 4 *51 ' 55 "	S11°20'32"W	32.29'	16.53					

NASHVILLE, TENNESSEE 37206

(615) 244-8591

Tdarnall@ragansmith.com

OWNER/DEVELOPER MBSC TN HOMEBUILDERS, LLC C/O BRIAN ROWE 312 S. GAY STREET, SUITE 200 KNOXVILLE, TENNESSEE 37902 (865) 408-8322

PHASE 2A

LOTS 201-227

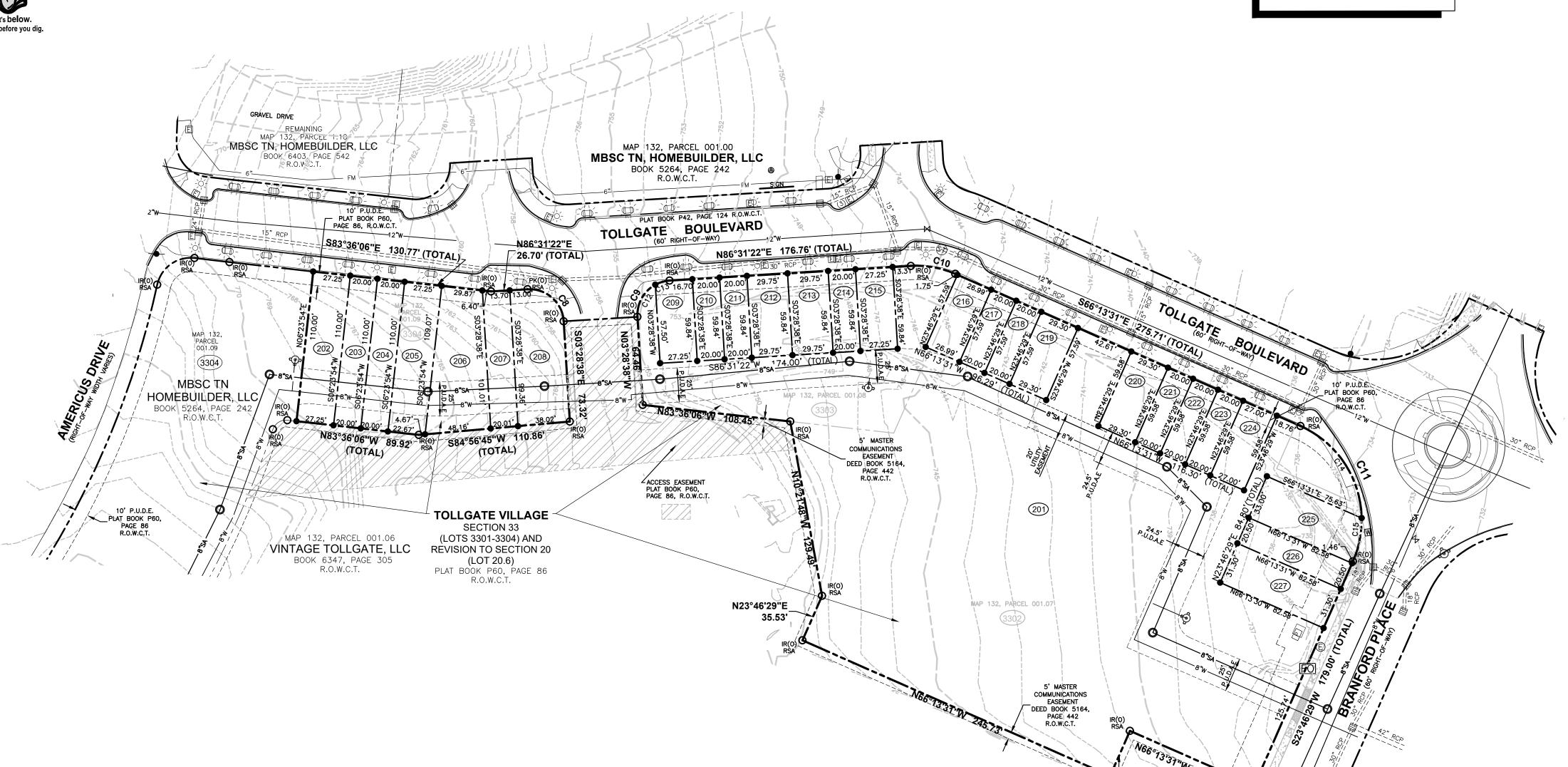
S23°46'29"W 36.00'

- 0.00 AC.±

- 3.28 AC. \pm

TOTAL LOT AREA

TOTAL R.O.W. AREA


TOTAL SITE AREA

TOTAL LINEAR FEET OF ROAD - 0 FT.

LOCATION MAP

SITE DATA TABLE (PHASE 2A) - 3.28 AC.±

Know what's below.
Call before you dig.

DEED REFERENCE

MAP 132. PARCEL 001.07. 001.08 AND 001.09
BEING A PORTION OF THE SAME PROPERTY CONVEYED TO MBSC TN HOMEBUILDER, LLC, FROM TGF 2010, LLC OF RECORD IN BOOK 5264, PAGE 242, REGISTER'S OFFICE FOR WILLIAMSON COUNTY, TENNESSEE.

PLAT REFERENCE

BEING LOTS 3302 AND 3303 AND A PORTION OF LOT 3304 AS SHOWN ON THE FINAL PLAT ENTITLED "TOLLGATE VILLAGE, SECTION 33 (LOTS 3301-3304)AND REVISION TO SECTION 20 (LOT 20.6)" OF RECORD IN PLAT BOOK P60, PAGE 86, REGISTER'S OFFICE FOR WILLIAMSON COUNTY, TENNESSEE.

PROPERTY MAP REFERENCE BEING A PORTION OF PARCEL 001.09 AS SHOWN ON WILLIAMSON COUNTY PROPERTY MAP 132.

BEING PARCELS 001.07 AND 001.08 AS SHOWN ON WILLIAMSON COUNTY PROPERTY MAP 132.

TOTAL AREA = 142,697 SQUARE FEET OR 3.28 ACRES±

SE SE \geq \Box OME MB

1008

PRELIMINARY PLAT

1 of 1

TRAFFIC IMPACT STUDY

for

TOLLGATE VILLAGE

Thompson's Station, Tennessee
October 12, 2018

Prepared for:

MBSC TN HOMEBUILDERS, LLC 402 S. Gay Street, Suite 202 Knoxville, Tennessee 37902

Prepared by:

RAGAN-SMITH ASSOCIATES, INC. 315 Woodland Street, P.O. Box 60070 Nashville, Tennessee 37206-0070 (615) 244-8591

TOLLGATE VILLAGE TRAFFIC IMPACT STUDY

TABLE OF CONTENTS

SEC1	<u> TION</u>		<u>PAGE</u>
EXEC	UTIVE	SUMMARY	- ES-1 -
I.	INTR	ODUCTION	- 1 -
	Α.	Purpose of Study	- 1 -
	B.	Study Methodology	- 1 -
II.	PRO	JECT DESCRIPTION	-2-
	A.	Existing Development	- 2 -
	B.	Proposed Development	- 2 -
	C.	Project Access	- 5 -
	D.	Phasing and Timing	- 5 -
III.	EXIS	TING CONDITIONS	- 6 -
	A.	Transportation System	
	B.	Traffic Volumes	- 6 -
IV.	FOR	ECASTED BACKGROUND TRAFFIC	- 8 -
	A.	Introduction	- 8 -
	B.	Specific Development Growth	
	C.	Annual Growth	
	D.	Background Traffic	- 8 -
V.	PRO	POSED SITE TRAFFIC	- 11 -
	A.	Local Trip Generation Data	- 11 -
	B.	Horizon Year 2022 Trip Generation	- 12 -
	C.	Horizon Year 2027 Trip Generation	
	D.	Site Trip Distribution and Assignment	- 14 -
VI.	TRA	NSPORTATION ANALYSIS	- 21 -
	A.	Intersection Capacity Analysis	- 21 -
VII.	CON	CLUSIONS AND RECOMMENDATIONS	- 24 -
	A.	Introduction	- 24 -
	B.	General Conclusions and Recommendations	
	C.	Columbia Pike at Tollgate Boulevard	
	D.	Columbia Pike at Secondary Access (North)	
	E.	Columbia Pike at Declaration Way	
	F.	Tollgate Village Secondary Access (South)	- 25 -

APPENDIX

TOLLGATE VILLAGE TRAFFIC IMPACT STUDY

LIST OF FIGURES

<u>FIGURE</u>	DESCRIPTION	<u>PAGE</u>
1	LOCATION MAP	3
2	EXISTING DEVELOPMENT LAYOUT & SUMMARY	4
3	EXISTING TRAFFIC VOLUMES	7
4	2022 BACKGROUND TRAFFIC VOLUMES	9
5	2027 BACKGROUND TRAFFIC VOLUMES	10
6	2022 SITE TRIP DISTRIBUTION	15
7	2027 SITE TRIP DISTRIBUTION	16
8	2022 SITE TRAFFIC VOLUMES	17
9	2027 SITE TRAFFIC VOLUMES	18
10	2022 TOTAL TRAFFIC VOLUMES	19
11	2027 TOTAL TRAFFIC VOLUMES	20
	LIST OF TABLES	
<u>TABLE</u>	<u>LIST OF TABLES</u> <u>DESCRIPTION</u>	<u>PAGE</u>
TABLE 1		
	DESCRIPTION	2
1	DESCRIPTION TOLLGATE VILLAGE – EXISTING DEVELOPMENT CONDITIONS	2
1 2	DESCRIPTION TOLLGATE VILLAGE – EXISTING DEVELOPMENT CONDITIONS TRIP GENERATION DATA COMPARISON	2 11 11
1 2 3	DESCRIPTION TOLLGATE VILLAGE – EXISTING DEVELOPMENT CONDITIONS TRIP GENERATION DATA COMPARISON TRIP GENERATION: REMAINING APPROVED RESIDENTIAL	2 11 11
1 2 3 4	TOLLGATE VILLAGE – EXISTING DEVELOPMENT CONDITIONS TRIP GENERATION DATA COMPARISON	2 11 11 12
1 2 3 4 5	TOLLGATE VILLAGE – EXISTING DEVELOPMENT CONDITIONS TRIP GENERATION DATA COMPARISON	2 11 11 12 12
1 2 3 4 5	DESCRIPTION TOLLGATE VILLAGE – EXISTING DEVELOPMENT CONDITIONS	2 11 11 12 12 13
1 2 3 4 5 6 7	TOLLGATE VILLAGE – EXISTING DEVELOPMENT CONDITIONS	2 11 11 12 12 13 14
1 2 3 4 5 6 7 8	TOLLGATE VILLAGE – EXISTING DEVELOPMENT CONDITIONS	2 11 11 12 12 13 14 21

EXECUTIVE SUMMARY

INTRODUCTION

Tollgate Village is located on the west side of Columbia Pike (US Highway 31 / State Route 6) between Independence High School and the West Harpeth River in the Town of Thompson's Station, Tennessee. The purpose of this traffic impact study is to review the access needs and roadway improvements for traffic mitigation at Tollgate Village.

BACKGROUND TRAFFIC

Based upon the proposed development schedule, the years 2020 and 2027 will be used to analyze the impact of Tollgate Village.

To establish background traffic growth, TDOT historical traffic data was obtained in the project vicinity. Traffic growth due to outside developments and general population growth was based upon linear regression analysis of the historical traffic count data. Background traffic growth was established by increasing existing traffic by **3 percent annually** for the period from 2016 to 2027.

SITE TRAFFIC

The traffic impact of Tollgate Village is based upon a calculation of the number of vehicle trips that will enter and/or exit the site. The analysis periods of this report are the a.m. and p.m. peak hours of a typical weekday. Therefore, trips were generated according to the *Institute of Transportation Engineers (ITE) Trip Generation Manual, 9th Edition*. The total future estimated trip generation for Tollgate Village is shown in the table below.

TOLLGATE VILLAGE									
FUTURE TRIP GENERATION									
Londline	Total Daily Units Trips Enter Exit To					ur P.M. Peak Hour			
Land Use	Units	Trips	Enter	Exit	Total	Enter	Exit	Total	
Single Family Homes	236 homes	2,291	32	98	130	88	56	144	
Apartments (Multifamily Housing, Mid-Rise)	32 units	173	2	11	13	9	6	15	
Multifamily Housing (Low-Rise)	231 units	1,706	32	69	101	33	34	67	
Retail, including:	28,722 sf 12,900 sf 1,400 sf 2,140 sf 3,500 sf 1,400 sf	3,763	171	103	274	154	148	302	
Office, including: General Office Medical Office	45,242 sf 34,600 sf	1,734	116	3	119	44	162	206	
Restaurant, including: • Quality Restaurant • High-Turnover Sit Down • Fast Food w/o Drive Thru	7,171 sf 4,900 sf 2,500 sf	2,017	39	27	66	60	30	90	
Day Care Center	50 students	225	23	20	43	20	22	42	
TOTAL		11,909	415	331	746	408	458	866	

TRAFFIC ANALYSIS

The following public intersections were analyzed for capacity deficiencies and improvement needs:

- Columbia Pike at Tollgate Boulevard
- Columbia Pike at North Access
- Columbia Pike at Declaration Way
- Declaration Way at Branford Place

For these intersections, the following traffic scenarios were analyzed, where applicable:

- 2016 Existing Traffic
- 2022 Background Traffic
- 2022 Total Traffic that contains all traffic projected in the study area, including the completion of residential development at Tollgate Village
- 2027 Background Traffic
- 2027 Total Traffic that contains all traffic projected in the study area, including the full build-out of Tollgate Village

CONCLUSIONS AND RECOMMENDATIONS

General Conclusions and Recommendations

Access to Columbia Pike for Tollgate Village can be provided at level of service D or better via the
existing Tollgate Boulevard and Secondary Access (North) routes. Secondary access to
Declaration Way as currently shown on the Tollgate Village Concept Plan will provide additional
connectivity for Tollgate Village and Independence High School but is not necessary to address
traffic congestion due to Tollgate Village and will not result in a significant change or improvement
to the level of service at the intersections on Columbia Pike.

Columbia Pike at Tollgate Boulevard

- The traffic signal and turn lane improvements that were constructed at this intersection by the Tollgate Village developer in 2017 provide additional capacity and traffic control for the full build-out of Tollgate Village. In the future, traffic operations at this intersection are expected to be characterized by overall level of service B during the a.m. and p.m. peak hours with individual turning movements operating at level of service D or better.
- No additional laneage or traffic control modifications are recommended for this intersection to mitigate the impact of the Tollage Village development.

Columbia Pike at Secondary Access (North)

- The Columbia Pike access located north of Tollgate Boulevard in the area of the existing Shelter Insurance Office Building was constructed by the Tollgate Village developer in 2018.
- Based on previous traffic impact study findings and recommendations, the Secondary Access (North) is restricted to right-in/right-out only access at Columbia Pike due to the width of Columbia Pike and proximity to the bridge over the West Harpeth River.
- The Secondary Access (North) should be modified to provide full turning movement access when Columbia Pike has been widened by TDOT to consist of a five-lane roadway to the north of Tollgate Village and across the West Harpeth River.
- Future widening of Columbia Pike by TDOT should provide the extension of the existing five-lane section north of Tollgate Village and across the West Harpeth River. The extension of this roadway section will provide a northbound left turn lane for the North Access to Tollgate Village.

 When the North Access to Tollgate Village is converted to provide full turning movement access, a southbound right turn lane should be constructed on Columbia Pike. The final design of the Columbia Pike widening, the West Harpeth River crossing, and impacts to adjacent utilities and floodways/floodplains should be considered when determining the feasibility and final design of this right turn lane.

Columbia Pike at Declaration Way

- Williamson County Schools should continue to utilize a traffic control officer to direct traffic at this
 intersection during peak arrival and dismissal periods. Based upon the high volume and peaking
 characteristics of the school traffic, a permanent traffic signal installation could be considered as
 an alternative to the continued use of a traffic control officer.
- The existing Independence High School traffic uses the shoulder of Columbia Pike as a southbound right turn lane during the peak morning arrival period. The existing southbound right turn lane on Columbia Pike at Declaration Way could be extended to have a length of 500 feet with a taper length of 100 feet as part of future TDOT 3R (Resurfacing, Restoring, or Rehabilitation) projects on Columbia Pike to be reflective of the actual roadway usage in the area.
- As previously discussed, a secondary access from Tollgate Village to Declaration Way is shown in the current Tollgate Village Concept Plan. This access will provide additional connectivity for Tollgate Village and Independence High School but is not necessary to address traffic congestion due to Tollgate Village and will not result in a significant change or improvement to the level of service at other intersections on Columbia Pike.

Tollgate Village Secondary Access (South)

- The Tollgate Village developer, Town staff, and Williamson County Schools staff should continue to coordinate on the agreements necessary to obtain right-of-way or an easement to access and use Declaration Way between the proposed Secondary Access (South) and Columbia Pike.
- The Secondary Access (South) does not need to be constructed as part of any current phase of development at Tollgate Village because the access is not necessary to address traffic congestion, will not result in a significant change or improvement to the level of service at other intersections on Columbia Pike, and because the agreements involving the Town of Thompson's Station and Williamson County Schools have not been approved by the appropriate decision-making bodies and have not been prepared or executed.
- A schedule for the construction of the Secondary Access (South) should be established when the
 appropriate approvals are received from the appropriate decision-making bodies at the Town of
 Thompson's Station and Williamson County Schools and when the necessary agreements have
 been prepared and executed.
- When the Tollgate Village Secondary Access (South) is constructed, new pavement markings
 consistent with the MUTCD should be installed on Declaration Way between Columbia Pike and
 the South Access.
- The intersection of Declaration Way and the Secondary Access (South) should operate as a twoway stop control intersection. The South Access should be the minor street with stop control and Declaration Way should be the major street without stop control.

I. INTRODUCTION

A. Purpose of Study

The purpose of this study is to evaluate the access needs and analyze the transportation related impacts of future development at the Tollgate Village community in the Town of Thompson's Station, Tennessee. Traffic impact studies have been previously prepared for Tollgate Village as warranted by concept plan and/or site plan submittals. Prior to this report, the most recent traffic impact study for Tollgate Village was prepared in February 2017. The preparation of an updated traffic impact study has been completed due to the circumstances noted below.

- Traffic counts for the February 2017 Tollage Village Traffic Impact Study were conducted in November 2016 and January 2017 and are more than 18 months old at this time. For development impact analyses, traffic count data is generally preferred to be less than 12 months and should not be more than 18 to 24 months old.
- For sections of Tollgate Village that have not yet been developed, a speculative development scenario based on what the existing zoning allows was prepared for the estimation of future trips as part of the February 2017 Tollage Village Traffic Impact Study. Since that time, concept plan updates and site plan submittals/approvals have provided clarity and new information about development plans in portions of these areas.
- The Town of Thompson's Station engaged a new traffic engineering consultant in the summer of 2017 that has not previously reviewed a comprehensive traffic impact study for the Tollgate Village development.
- The Town of Thompson's Station Board of Mayor and Alderman adopted updates to the subdivision regulations within the Town's Land Development Ordinance (LDO) in September 2018. The updates include the addition of traffic study requirements to the thoroughfares section of the subdivision regulations.

This report has been requested by Town of Thompson's Station planning staff and the Town's traffic engineering consultant to address transportation impacts and estimated trip generation as part of preliminary plat and site plan reviews for proposed sections of residential and retail/commercial development at Tollgate Village.

B. Study Methodology

The existing conditions and future full build-out of Tollgate Village were evaluated based on the requirements of the Town of Thompson's Station and guidance from the Institute of Transportation Engineers (ITE) related to analysis of site development transportation impacts. The requirements and guidance include the following elements.

- Inventory of the existing transportation system and an assessment of its adequacy
- Establishment of a full build-out horizon year and background traffic growth
- Estimation of future development traffic
- Transportation analyses to evaluate project access alternatives and to assess any site or non-site related impacts on the system
- Development of conclusions and recommendations for project access and roadway improvements.

This report documents the elements outlined above and includes the information collected and analysis completed to develop the conclusions and recommendations.

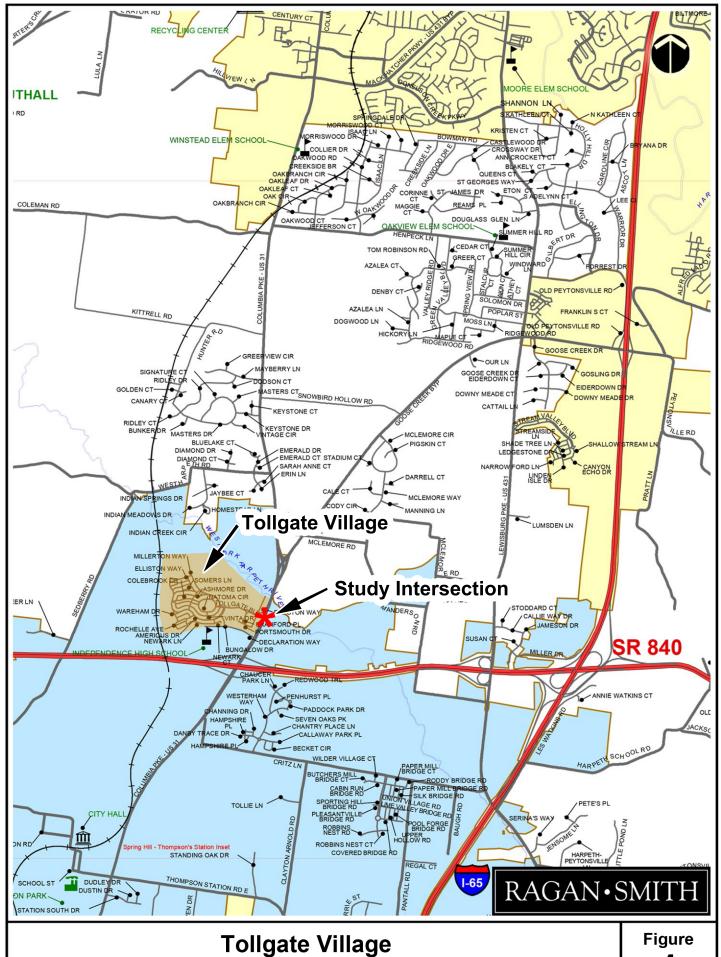
II. PROJECT DESCRIPTION

A. Existing Development

As shown in Figure 1, Tollgate Village is located on the west side of Columbia Pike (US Highway 31 / State Route 6) between Independence High School and the West Harpeth River in the Town of Thompson's Station, Tennessee. The Tollgate Village Concept Plan includes a total area of 345.9 acres. At the time that the traffic counts for this traffic study were conducted, the development at Tollgate Village consisted of the land uses and units shown in Table 1

TABLE 1									
TOLLGATE VILLAGE – EXISTING DEVELOPMENT CONDITIONS (1)									
Location and/or		Deve	lopment Summary (2)						
Description	Land Use	Completed and/or Occupied	Not Completed and/or Occupied	Total					
	Single Family	408 homes	236 homes	644 homes					
Residential Area	Condominiums Townhomes	81 units	-	81 units					
Vintage Tollgate	Apartments	169 units	32 units	201 units					
Shelter Insurance	General Office	15,000 sf	7,500 sf	22,500 sf					
Office Building	Medical Office	7,500 sf	-	7,500 sf					
Tollgate Medical Plaza	Medical Office	31,200 sf	15,600 sf	46,800 sf					
(1) Based on previous project approvals and site/field observations in September 2018 (2) Does not include vacant tracts in the NC zoned area (see Section II B below)									

 $^{^{\}scriptscriptstyle 2)}$ Does not include vacant tracts in the NC zoned area (see Section II.B below)


Figure 2 shows an aerial layout of Tollgate Village including a summary of the existing development.

B. Proposed Development

The remaining single-family residential areas at Tollgate Village consist of Sections 15, 16 and 17 that will include a total of 259 homes. In Section 15, there are currently 28 homes constructed and occupied. Additionally, five (5) homes in other completed sections of Tollgate Village were not complete at the time of this study and will be considered as part of the proposed development. Therefore, the remaining proposed single family residential development at Tollgate Village will consist of 236 homes as shown in Table 1 above.

The sections of Tollgate Village that remain vacant at the time of this study include residential and commercial areas with the High Intensity Residential (D3) and Neighborhood Commercial (NC) zoning designations. These zoning districts are intended for higher density residential development and neighborhood commercial activities, small-scale businesses, and high intensity residential.

To assess the future traffic impact of the vacant tracts in the NC zoned area at Tollgate Village, the Town of Thompson's Station Land Development Ordinance was used to identify potential allowable uses for establishing a feasible development scenario for the commercial area. This scenario was established in order to estimate future traffic for analysis purposes only. It is not binding and does not restrict the uses and sizes of development in the commercial area. Development in the commercial area will be subject to the allowable uses and standards of the Town's Land Development Ordinance. An illustration of the possible development scenario is included in the Appendix of this report.

Tollgate Village Location Map

C. Project Access

Access to Tollgate Village includes an existing primary access and future, proposed secondary access as described below.

- Primary Access Primary access to Tollgate Village is provided by Tollgate Boulevard. Tollgate Boulevard intersects Columbia Pike approximately 1,875 feet north of the State Route 840 interchange and approximately 1,900 feet south of the Goose Creek Bypass (State Route 248). Tollgate Boulevard consists of one (1) lane for traffic entering Tollgate Village and two (2) lanes for traffic exiting Tollgate Village. The exiting lane assignment on Tollgate Boulevard includes one (1) right turn lane and one (1) left turn lane with storage lengths of approximately 200 feet. A traffic signal was installed at this intersection by the Tollgate Village developer in December 2016.
- <u>Secondary Access (North)</u> Secondary Access to Tollgate Village is provided by a roadway connection to Columbia Pike approximately 640 feet north of Tollgate Boulevard. This access was constructed in 2018. Due to the existing laneage and roadway geometry on Columbia Pike, this access to Tollgate Village is currently restricted to right-in/right-out movements only.
- <u>Secondary Access (South)</u> The Tollgate Village Concept Plan includes a proposed connection to Declaration Way, the existing access drive to Independence High School. Access at this location will require an agreement with the Williamson County Schools system.

D. Phasing and Timing

The build-out of Tollgate Village is occurring in multiple phases with the development schedule largely influenced by market conditions. For the future traffic analysis in this report, it will be assumed that the single-family residential sections and Tollgate Town Center (Phases 1, 2A, and future phases) are complete in the year 2022 and that full build-out of Tollgate Village occurs in the year 2027.

III. EXISTING CONDITIONS

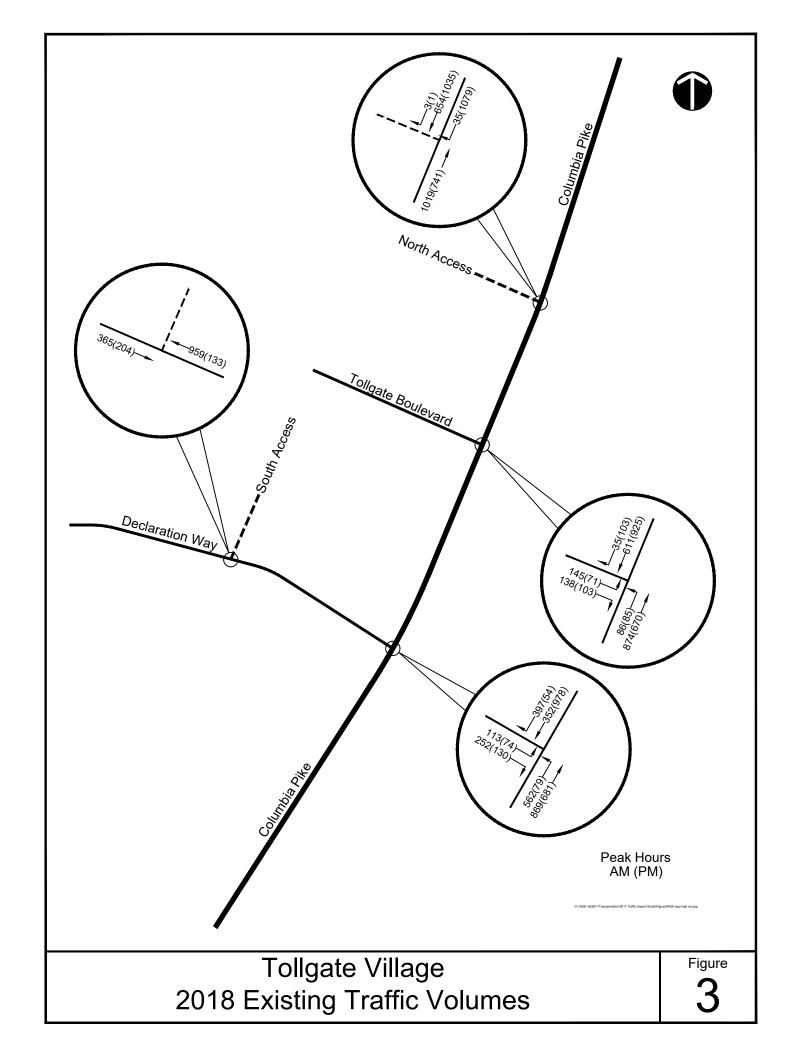
A. <u>Transportation System</u>

The existing transportation system in the area that provides access to Tollgate Village consists of arterial, collector, and private roadways. The following roadways will comprise the study area for consideration of traffic mitigation measures at Tollgate Village.

- Columbia Pike (US Highway 31 / State Route 6) in the study area is classified as a minor arterial on the Tennessee Department of Transportation (TDOT) functional classification system and is listed as an arterial in the General Plan for Thompson's Station. The current Thompson's Station Road Map does not indicate a classification for Columbia Pike. The Columbia Pike corridor connects the Cities of Franklin and Columbia and passes through the Town of Thompson's Station and the City of Spring Hill. Within the vicinity of Tollgate Village, Columbia Pike transitions from a two-lane to a five-lane roadway between the West Harpeth River and Tollgate Boulevard. The five-lane section of Columbia Pike continues to the south beyond State Route 840. The posted speed limit on Columbia Pike is 45 mph.
- Tollgate Boulevard is listed as a collector roadway in the General Plan for Thompson's Station. The current Thompson's Station Road Map does not indicate a classification for Tollgate Boulevard. Tollgate Boulevard is two-lane roadway and provides primary access to Tollgate Village. Tollgate Boulevard ends within the Tollgate Village development and does not provide access to any area adjacent to or beyond the area included on the Tollgate Village concept plan. The posted speed limit on Tollgate Boulevard is 30 mph.
- Independence High School Access is a private drive providing access from Columbia Pike to Independence High School. This private drive generally consists of a three-lane section with one travel lane in each direction and a two-way continuous left turn lane. At Columbia Pike, a median and exclusive left and right turn lanes are provided.

Figure 1 shows the location of Tollgate Village and the intersection of Columbia Pike at Tollgate Boulevard. Figure 2 shows an aerial layout of the Tollgate Village community.

B. Traffic Volumes


In order to assess the adequacy of the local transportation system, an evaluation of the current operational quality of intersections within the study area was required.

The peak hour of the adjacent street traffic was used to evaluate the traffic operations for access at Tollgate Village. To identify the peak periods for analysis, traffic counts were conducted in September 2018 at the following intersections:

- Columbia Pike at Tollgate Boulevard
- Columbia Pike at Tollgate Village Secondary Access (North)
- Columbia Pike at Declaration Way

The traffic counts were conducted from 6:00 a.m. to 9:00 a.m. and to 2:00 – 7:00 p.m. to identify the peak hour of traffic for analysis. According to the traffic counts conducted on Columbia Pike, the a.m. and p.m. peak hours in the study area for intersection analysis are **6:45 a.m.** – **7:45 a.m.**, and **4:45 p.m.** – **5:45 p.m.**, respectively.

Figure 3 shows the existing peak hour traffic volumes for the intersections in the study area.

IV. FORECASTED BACKGROUND TRAFFIC

A. Introduction

Based on the proposed development schedule, the years 2022 and 2027 will be used to analyze the traffic impact of Tollgate Village.

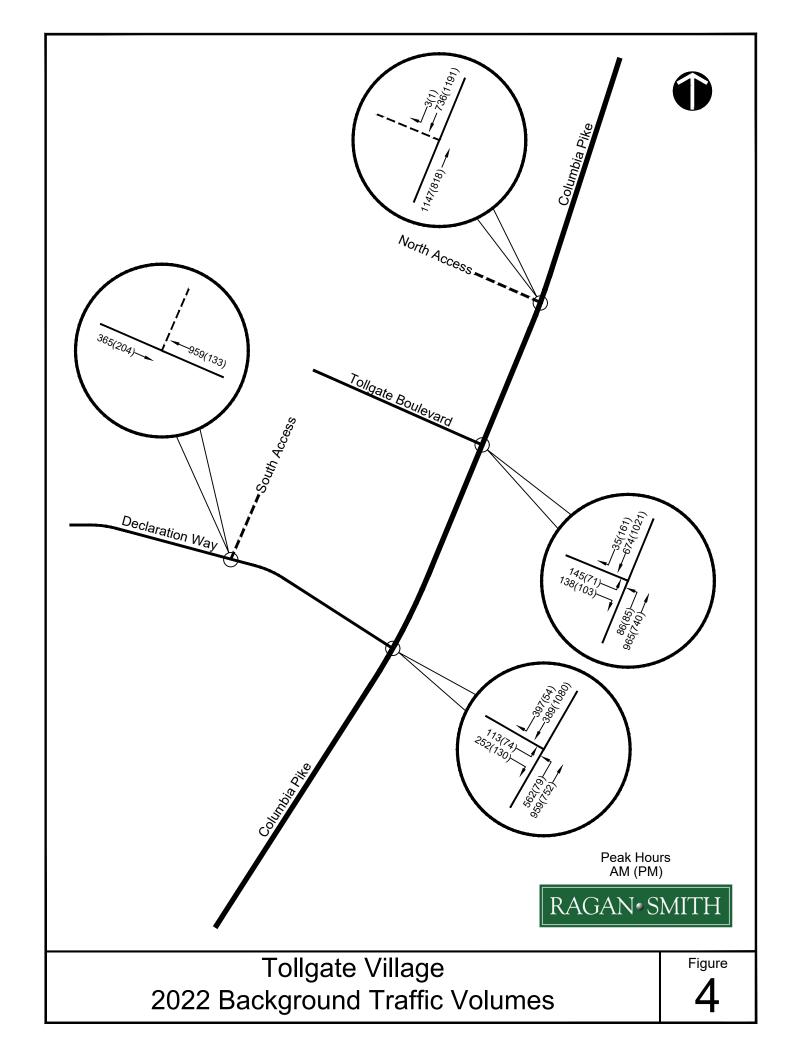
Before any impacts to the study area could be addressed, some estimate of background traffic volumes for the horizon years 2022 and 2027 had to be established. Background traffic volumes were established by estimating potential growth due to small scale development and/or general population growth in the area.

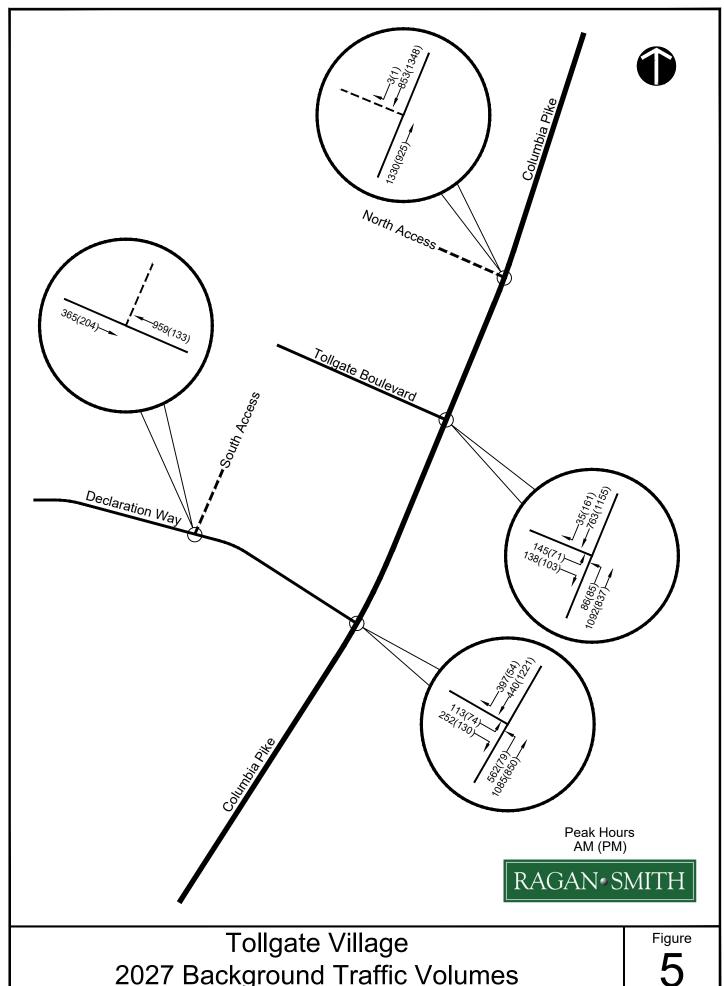
B. Specific Development Growth

No specific, approved developments are located within the immediate study area on Columbia Pike. Traffic growth from developments outside of the study area was accounted for by applying an annual growth rate as described below.

C. Annual Growth

To establish traffic growth due to population growth or small scale development, Tennessee Department of Transportation (TDOT) historical traffic count data was obtained at locations within the general project vicinity. The TDOT historical traffic count data includes traffic volume counts conducted annually on Columbia Pike and the Goose Creek Bypass beginning in 1985. The available historical count data was tabulated for each location and analyzed to identify patterns or growth trends.


Based upon linear regression analysis of this data, we will use a **2.5 percent annual growth** rate as the base growth for the existing traffic volumes.


D. Background Traffic

Background traffic for the future traffic forecasts was compiled based on the following:

- 2018 existing traffic data
- 2.5% annual increase of traffic volumes for the period from 2016 to 2022
- 2.5% annual increase of traffic volumes for the period from 2016 to 2027

Background traffic volumes on the future roadway, representing existing traffic volumes plus background growth, for the year 2022 are shown in Figure 4. Background traffic volumes on the future roadway, representing existing traffic volumes plus background growth, for the year 2027 are shown in Figure 5.

2027 Background Traffic Volumes

V. PROPOSED SITE TRAFFIC

A. Local Trip Generation Data

To quantify site-related impacts within the study area, some estimate of future site trip generation and traffic assignment needed to be established. In many cases, trip generation rates for proposed developments are established using information for the weekday a.m. and p.m. peak hour of the adjacent street as shown in the *Trip Generation Manual*, 10th Edition published by the Institute of Transportation Engineers (ITE).

Previous traffic engineering experience for the single-family home and apartment uses at Tollgate Village has indicated that the actual trip generation for these uses at Tollgate Village may have different trip-making characteristics than the data that is presented in the ITE *Trip Generation Manual*, 10th Edition. Therefore, local data was collected at Tollgate Village for the existing single-family home and apartment uses to compare to ITE *Trip Generation Manual* estimates. A comparison of the trip generation data that was collected locally at Tollage Village and the trip generation estimates presented in the ITE *Trip Generation Manual* is shown in Table 2 below.

TABLE 2								
TRIP GENERATION DATA COMPARISON								
Landllas	# of Units	Data	A.M. Peak Hour			P.M. Peak Hour		
Land Use	# of Units	Source	Enter	Exit	Total	Enter	Exit	Total
Single-Family	408 homes	ITE	88	249	337	288	167	455
Homes and Multifamily Housing	81 Multifamily	Local	67	202	269	183	116	299
(Low-Rise)	% Differen	ce	- 23.9	- 18.9	- 20.2	- 36.5	- 30.5	- 34.3
Apartments	169 units	ITE	15	39	54	40	27	67
(Multifamily Housing, Mid-Rise)	169 units	Local	13	55	68	50	29	79
	% Differen	ce	+ 15.4	+ 41.0	+ 25.9	+ 25.0	+ 7.4	+ 17.9

As indicated by the data in Table 2, the specific, local trip generation data collected for Tollgate Village is lower than the comparative trip generation rates presented in the ITE *Trip Generation Manual*, 10th Edition. Based upon the guidance in the ITE *Trip Generation Handbook*, 3rd Edition related to the use of local data to estimate trip generation, the weighted average rate during the peak hours for the local trip data is appropriate for use as a stand-alone local estimator. Therefore, the peak hour trip generation estimates for the remaining single-family home and apartment uses will use the trip rates from the locally collected data. The estimated trip generation for the remaining portions of the approved single-family home and apartment uses at Tollgate Village is shown in Table 3 below.

TABLE 3									
TRIP	TRIP GENERATION: REMAINING APPROVED RESIDENTIAL								
Land Has	Daily	A.M.	Peak Ho	our ⁽²⁾	P.M. Peak Hour (2)				
Land Use	Total Units	Trips (1)	Enter	Exit	Total	Enter	Exit	Total	
Single Family Homes	236 homes	2,291	32	98	130	88	56	144	
Apartments (Multifamily Housing, Mid-Rise)	32 units	173	2	11	13	9	6	15	
TOTAL 2,464 34 109 143 97 62 159						159			
(1) Estimated from the IT	ΓΕ Trip Generati	on Manual,	10 th Editi	on					

(2) Estimated from locally collected data

B. Horizon Year 2022 Trip Generation

For the horizon year 2022, the trip generation for Tollgate Village will include the remaining approved residential shown in Table 3 and the Tollgate Village Town Center (phases 1, 2A, and future phases). The Tollgate Town Center will consist of 231 multifamily (low-rise) residential units, 22,822 square feet of retail space, 7,171 square feet of restaurant space, and 17,742 square feet of office space. The trip generation for the Tollgate Village Town Center was estimated using the data presented in the ITE *Trip Generation Manual, 10th* Edition. Table 4 below shows the unadjusted trip generation for the Tollgate Village Town Center.

TABLE 4									
UNADJUSTED TRIP GENERATION: TOLLGATE VILLAGE TOWN CENTER									
Land Use	ITE (1)	Total	Daily	A.M. Peak Hour			P.M	. Peak F	lour
Land Use	LUC	LUC Units Trips	Trips	Enter	Exit	Total	Enter	Exit	Total
Multifamily Housing (Low-Rise)	220	231 units	1,706	35	90	125	91	63	154
Retail	820	22,822 sf	2,201	101	62	163	87	95	182
Restaurant (Quality Restaurant)	931	7,171 sf	601	26	6	32	36	23	59
General Office	710	17,742 sf	198	32	4	36	15	70	85
TOTAL 4,706 194 162 356 229 251 480									
(1) ITE LUC = Institute	of Transp	ortation Eng	jineers (T	rip Gene	ration M	lanual) L	and Use	Code	

Since the Tollgate Village Town Center will contain a mix of office, retail, restaurant, and residential land uses, some trip interaction between these uses is expected. These types of trips between different uses within a mixed-use development are defined as "internal" trips because they do not require the use of any roadway facilities outside of the development site. The impact and net effect of internal trips can be established using the methodology shown in the ITE *Trip Generation Handbook*, 3rd Edition. For the retail, restaurant, office, and multifamily housing land uses at the Tollgate Village Town Center, the ITE *Trip Generation Handbook* indicates that approximately 16 percent of the a.m. peak hour trips and 26 percent of the p.m. peak hour trips will be internally captured. The single-family homes and apartments at Tollgate Village were not included in the internal capture reduction.

Table 5 below shows the total trip generation for Tollgate Village in the horizon year 2022 conditions. This includes the remaining approved residential trips shown in Table 3, the vacant portions of the Shelter Insurance Office Building and the Tollgate Medical Plaza, and the Tollgate Village Town Center trips with peak hour reductions for internally captured trips.

	TABLE 5								
	TRIP GENERA	ATION: H	IORIZON	YEAR	2022				
Land Use	Total Units	Daily	A.M	. Peak F	lour	P.M	. Peak H	lour	
Land Use	Total Units	Trips	Enter	Exit	Total	Enter	Exit	Total	
Single Family Homes	236 homes	2,291	32	98	130	88	56	144	
Apartments	32 units	173	2	11	13	9	6	15	
Multifamily Housing (Low-Rise)	231 units	1,706	34	82	116	62	49	111	
Retail	22,822 sf	2,201	95	20	115	66	60	126	
Restaurant	7,171 sf	601	7	3	10	21	9	30	
General Office	25,242 sf	279	70	5	75	26	100	124	
Medical Office	15,600 sf	512	70	5	75	26	108	134	
TOTAL	•	7,763	240	219	459	272	288	560	

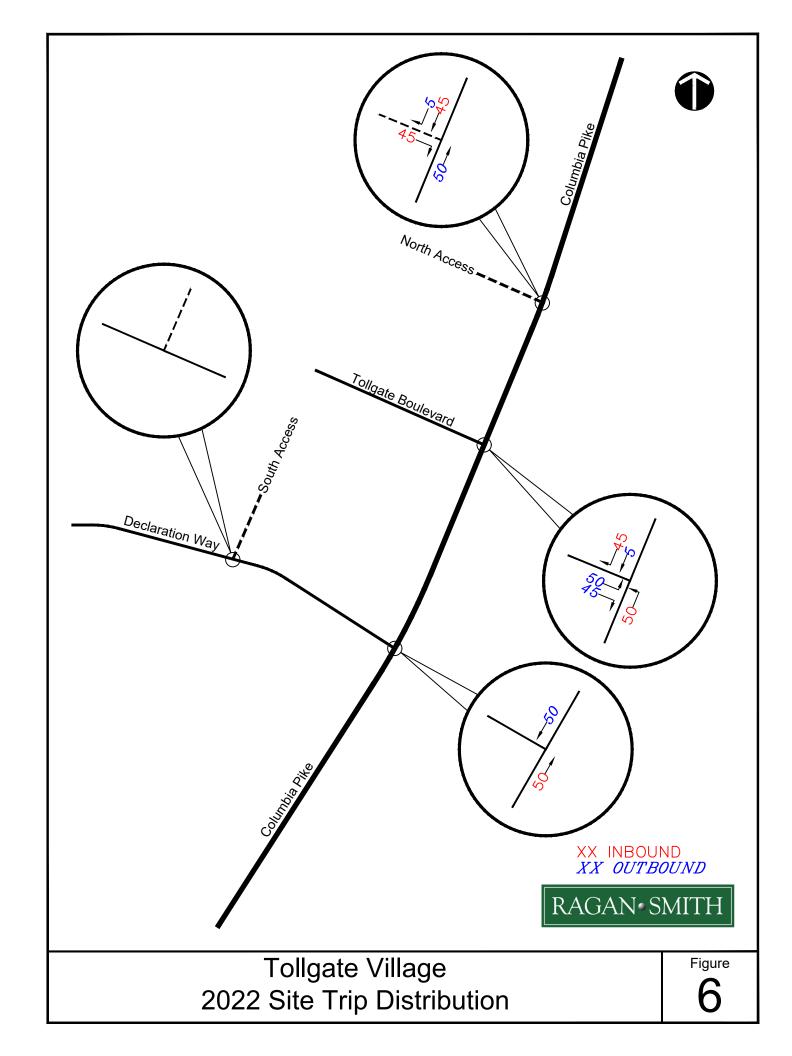
C. Horizon Year 2027 Trip Generation

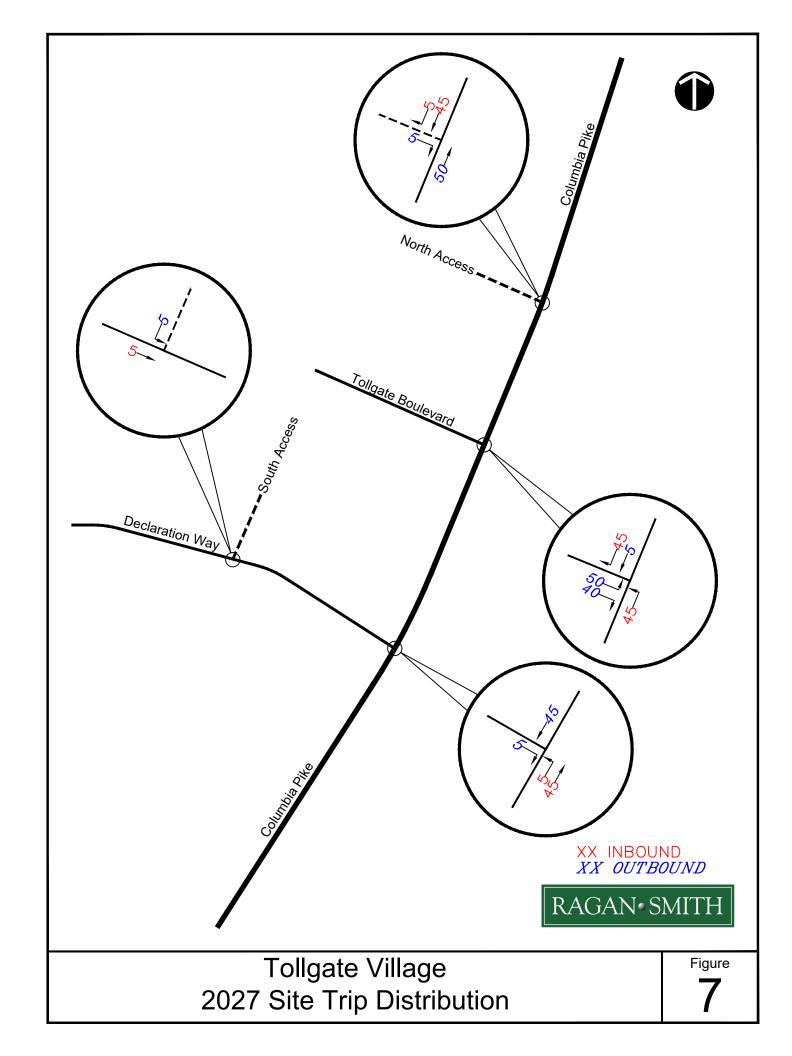
As previously discussed in Section II.B of this report, potential development in the commercial area and outparcels at Tollgate Village was identified using the Town of Thompson's Station Land Development Ordinance to establish a feasible development scenario for the commercial area. This scenario was established in order to estimate future traffic for analysis purposes only. It is not binding and does not restrict the uses and sizes of development in the commercial area. Development in this area will be subject to the allowable uses and standards of the Town's Land Development Ordinance. An unadjusted estimate of trip generation for the future development scenario, including the Tollgate Village Town Center and the Tollgate Village commercial outparcels, is shown in Table 6.

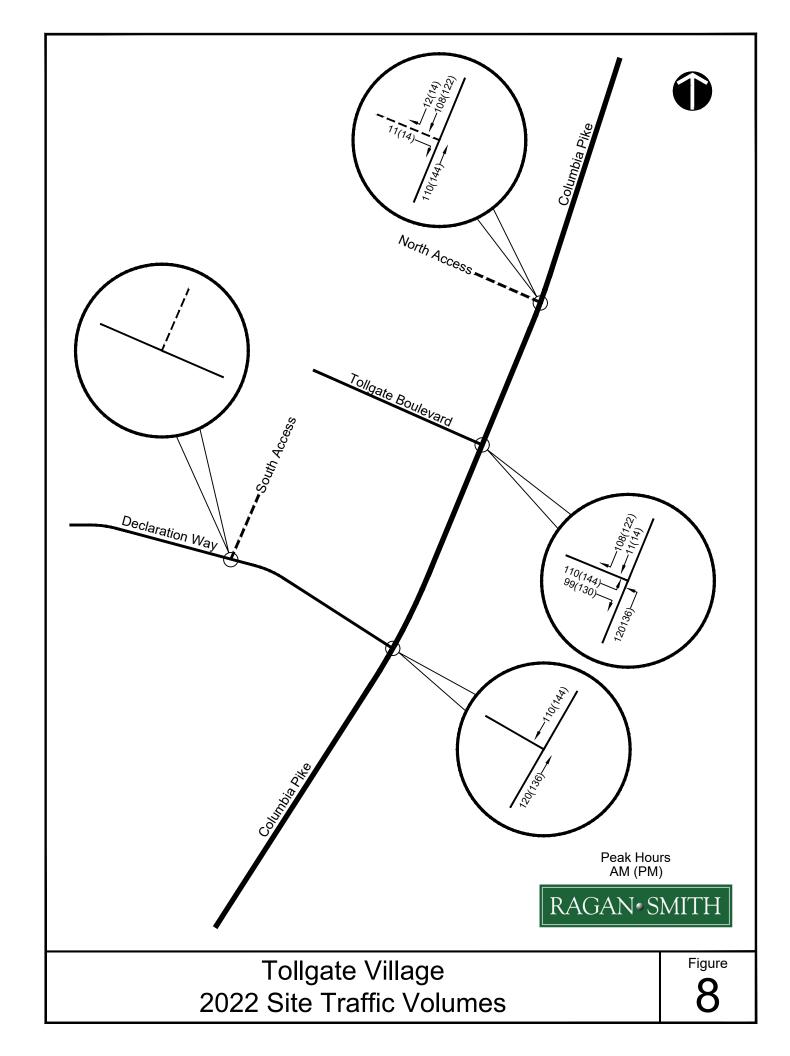
TABLE 6									
TRIP GENERATION: FUTURE DEVELOPMENT SCENARIO									
Landllas	ITE ⁽¹⁾	Total	Daily	A.M. Peak Hour			P.M	. Peak l	lour
Land Use	LUC	Units	Trips	Enter	Exit	Total	Enter	Exit	Total
Multifamily Housing (Low-Rise)	220	231 units	1,706	35	90	125	91	63	154
Retail (Shopping Center)	820	28,722 sf	2,574	103	63	166	104	112	216
Drug Store	880	12,900 sf	1,143	36	20	56	54	56	110
Hair Salon	918	1,400 sf	n/a	1	1	2	1	2	3
Veterinarian	640	2,140 sf	46	4	4	8	4	4	8
Walk-In Bank	911	3,500 sf	n/a	41	38	79	47	45	92
Copy, Print, and Express Ship Store	920	1,400 sf	n/a	3	1	4	4	6	10
General Office	710	45,242 sf	492	73	10	83	21	94	115
Medical Office	720	34,600 sf	1,242	68	19	87	33	86	119
Restaurant (Quality Restaurant)	931	7,171 sf	601	26	6	32	36	23	59
Restaurant (High-Turnover Sit Down)	932	4,900 sf	550	27	22	49	30	18	48
Restaurant (Fast Food w/o Drive Thru)	933	2,500 sf	866	39	26	65	36	35	71
Day Care Center	565	50 students	225	23	20	43	20	22	42
TOTAL 9,445 479 320 799 481 566 1,04						1,047			
(1) ITE LUC = Institute of	of Transp	ortation Eng	ineers (Tr	ip Gener	ation M	anual) L	and Use	Code	

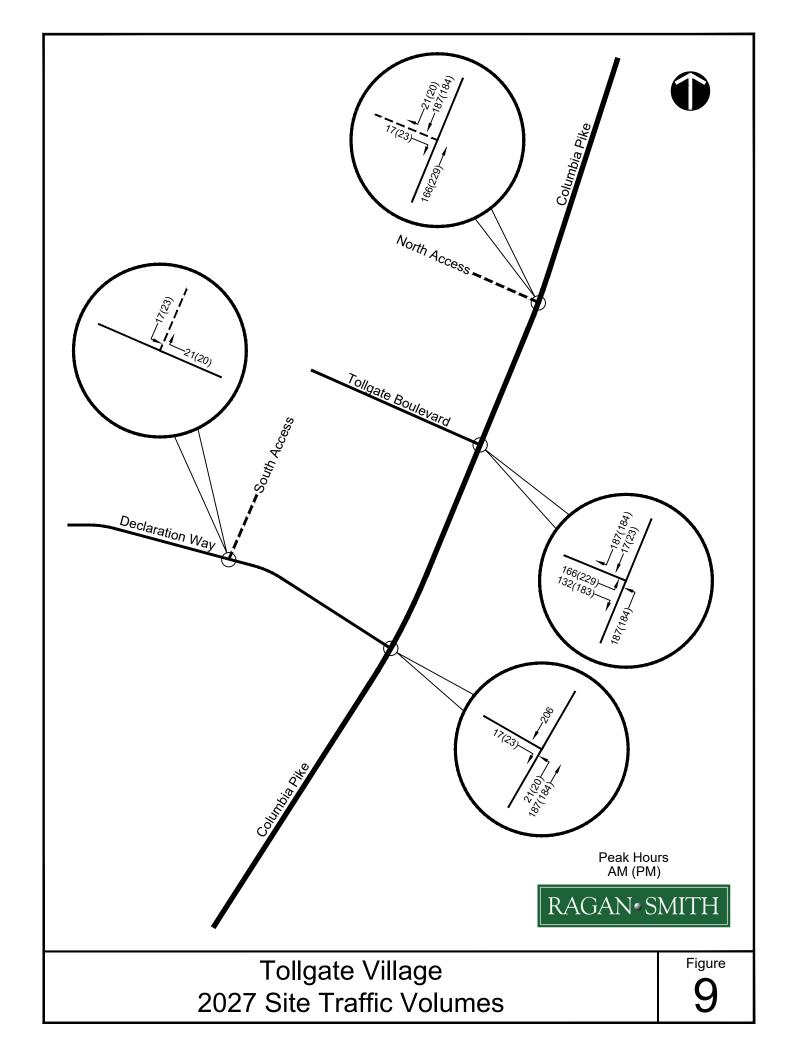
As previously discussed, since the Tollgate Village Town Center and Tollgate Village commercial outparcels will contain a mix of office, retail, restaurant, and residential land uses, some trip interaction between these uses is expected. These types of trips between different uses within a mixed-use development are defined as "internal" trips because they do not require the use of any roadway facilities outside of the development site. The impact and net effect of internal trips can be established using the methodology shown in the ITE Trip Generation Handbook, 3rd Edition. For the retail, restaurant, office, and multifamily housing land uses at the Tollgate Village Town Center and Tollgate Village commercial outparcels, the ITE Trip Generation Handbook indicates that approximately 26 percent of the a.m. peak hour trips and 34 percent of the p.m. peak hour trips will be internally captured. The single-family homes and apartments at Tollgate Village were not included in the internal capture reduction.

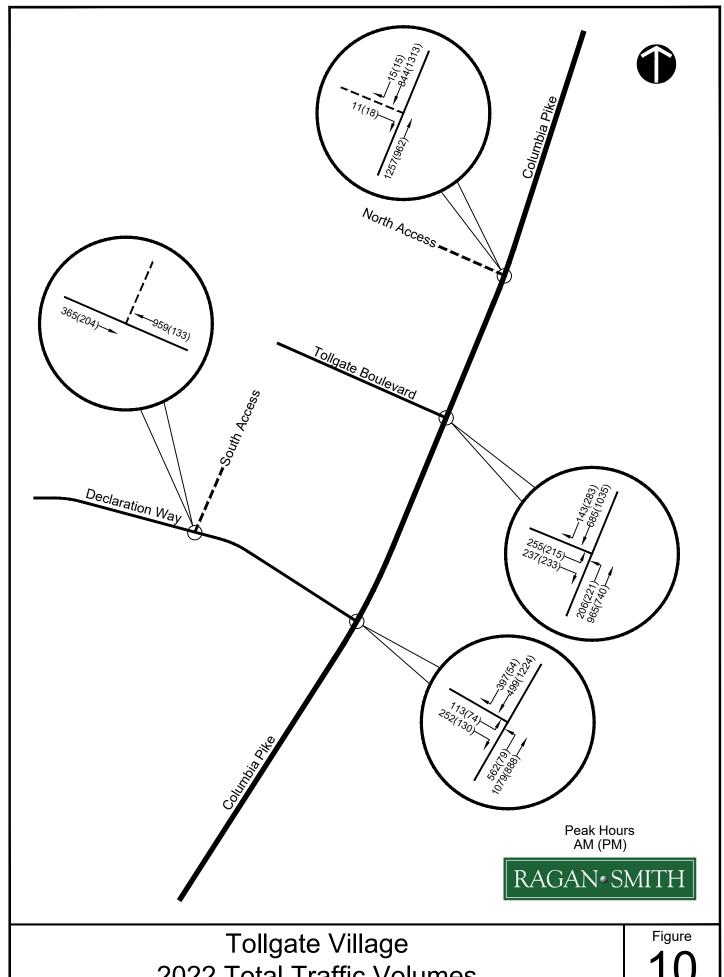
Table 5 below shows the total trip generation for Tollgate Village in the horizon year 2027 conditions. This includes the remaining approved residential trips shown in Table 3, the Tollgate Village Town Center, and the Tollgate Village commercial outparcels scenario based on the Town's Land Development Ordinance with peak hour reductions for internally captured trips in the Town Center and commercial outparcels.

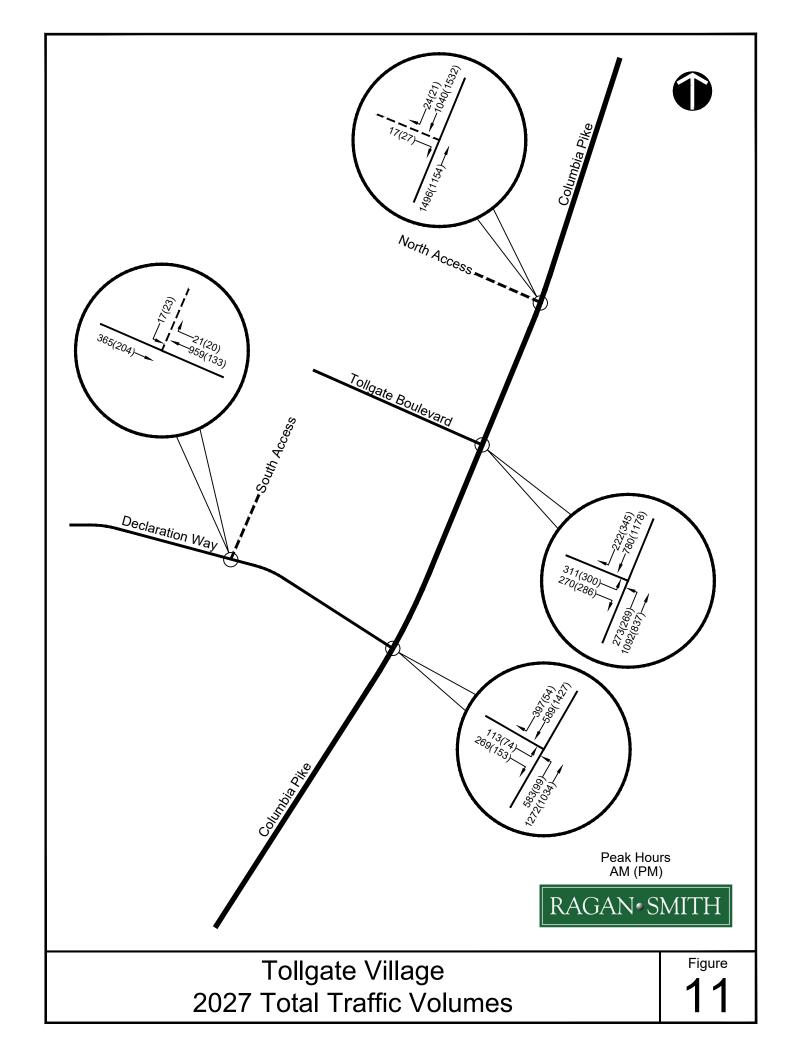

TABLE 7									
TRIP GENERATION: HORIZON YEAR 2027									
1 4 11	Tatal III	Daily	A.M. Peak Hour			P.M	P.M. Peak Hour		
Land Use	Total Units	Trips	Enter	Exit	Total	Enter	Exit	Total	
Single Family Homes	236 homes	2,291	32	98	130	88	56	144	
Apartments (Multifamily Housing, Mid-Rise)	32 units	173	2	11	13	9	6	15	
Multifamily Housing (Low-Rise)	231 units	1,706	32	69	101	33	34	67	
Retail, including: Shopping Center Drug Store Hair Salon Veterinarian Walk-In Bank Copy, Print, and Express Ship Store	28,722 sf 12,900 sf 1,400 sf 2,140 sf 3,500 sf 1,400 sf	3,763	171	103	274	154	148	302	
Office, including: • General Office • Medical Office	45,242 sf 34,600 sf	1,734	116	3	119	44	162	206	
Restaurant, including: • Quality Restaurant • High-Turnover Sit Down • Fast Food w/o Drive Thru	7,171 sf 4,900 sf 2,500 sf	2,017	39	27	66	60	30	90	
Day Care Center	50 students	225	23	20	43	20	22	42	
TOTAL		11,909	415	331	746	408	458	866	


D. Site Trip Distribution and Assignment


Site trips were distributed based primarily upon the prevalent commuter patterns in the area and the proximity and routes to major transportation facilities. Figures 6 and 7 show the distribution of residential and mixed-use/commercial site trips, respectively, for Tollgate Village.


Site traffic volumes generated by future sections of Tollgate Village in the horizon year 2022 are shown in Figure 8. The accumulation of existing, background growth, and site-generated traffic for the horizon year 2022 is shown in Figure 9.


Site traffic volumes generated by future sections of Tollgate Village in the horizon year 2027 are shown in Figure 10. The accumulation of existing, background growth, and site-generated traffic for the horizon year 2027 is shown in Figure 11.



2022 Total Traffic Volumes

VI. TRANSPORTATION ANALYSIS

A. Intersection Capacity Analysis

In order to determine the quality of existing traffic operations and identify capacity deficiencies, intersection capacity analyses were conducted at the following intersections.

- Columbia Pike at Tollgate Boulevard
- Columbia Pike at North Access
- Columbia Pike at Declaration Way
- Declaration Way at Branford Place

Capacity analyses were conducted according to the methodology and procedures outlined in the *Highway Capacity Manual*, HCM 2010, published by Transportation Research Board. Capacity analysis results for the a.m. peak hour are shown in Table 8.

TABLE 8								
INTERSECTION CAPACITY ANALYSIS RESULTS – A.M. PEAK HOUR								
		Leve	of Service	e (avg. dela	y/vehicle –	sec.)		
Intersection	Condition (1)		2022 H	lorizon	2027 F	lorizon		
		Existing	Back- ground	Total	Back- ground	Total		
	Overall Intersection	A (8.9)	A (8.8)	B (11.9)	A (8.9)	B (14.3)		
	NB Left	A (6.9)	A (6.8)	B (10.0)	A (6.9)	B (14.0)		
	NB Thru	A (5.3)	A (5.2)	A (7.1)	A (5.4)	A (8.7)		
Columbia Pike at Tollgate Boulevard	SB Thru	B (10.3)	B (10.0)	B (14.5)	B (10.1)	B (17.7)		
	SB Right	A (4.7)	A (4.5)	A (5.4)	A (4.3)	A (5.9)		
	EB Left	B (19.6)	C (20.9)	C (23.8)	C (22.2)	C (28.5)		
	EB Right	B (16.2)	B (17.4)	B (16.8)	B (18.6)	B (18.3)		
Columbia Pike at Secondary Access (North)	TWSC EB Right	-	-	B (11.8)	-	B (13.2)		
	NB Left	F (89.5)	F (122.2)	F (125.7)	F (125.0)	F (144.9)		
Columbia Pike at Declaration Way	TWSC EB Left	E (55.5)	E (57.8)	E (58.3)	E (58.2)	E (58.9)		
	TWSC EB Right	F (144.6)	F (182.4)	F (186.2)	F (185.5)	F (223.5)		
Declaration Way at Branford Place	TWSC SB Left					C (19.9)		
(1) TWSC = Two-way	Stop Control							

Capacity analysis results for the p.m. peak hour are shown in Table 9.

TABLE 9								
INTERSECTION CAPACITY ANALYSIS RESULTS – P.M. PEAK HOUR								
		Leve	of Service	e (avg. dela	y/vehicle -	sec.)		
Intersection	Condition (1)		2022 H	lorizon	2027 F	lorizon		
		Existing	Back- ground	Total	Back- ground	Total		
	Overall Intersection	A (8.5)	A (8.4)	B (13.2)	A (8.5)	B (18.6)		
	NB Left	A (7.3)	A (7.5)	B (14.7)	A (8.0)	C (29.0)		
	NB Thru	A (4.1)	A (4.0)	A (5.6)	A (3.8)	A (7.5)		
Columbia Pike at Tollgate Boulevard	SB Thru	B (10.2)	B (10.1)	B (15.1)	B (10.1)	C (21.6)		
Ü	SB Right	A (4.6)	A (4.4)	A (5.4)	A (4.1)	A (5.8)		
	EB Left	C (21.3)	C (23.1)	C (29.7)	C (25.7)	D (37.0)		
	EB Right	B (19.1)	C (20.9)	C (22.3)	C (23.4)	C (25.1)		
Columbia Pike at Secondary Access (North)	TWSC EB Right	-	-	C (15.3)	C (15.0)	C (18.0)		
	NB Left	B (11.2)	B (11.9)	B (13.4)	B (13.1)	C (16.4)		
Columbia Pike at Declaration Way	TWSC EB Left	D (32.7)	E (39.1)	F (57.8)	F (51.7)	F (105.3)		
	TWSC EB Right	B (14.9)	C (16.1)	C (18.7)	C (18.1)	D (25.3)		
Declaration Way at Branford Place	TWSC SB Left	-	-	-	-	B (10.6)		
(1) TWSC = Two-way	Stop Control							

Level of service (LOS) criteria for unsignalized intersections is shown in Table 10.

	TABLE 10							
LEVEL OF SERVICE DESCRIPTIONS FOR UNSIGNALIZED INTERSECTIONS								
Level of Service	Description							
Α	Usually no conflicting traffic	0 - 10						
В	Occasionally some delay due to conflicting traffic	> 10 - 15						
С	Delay is noticeable but not inconveniencing	> 15 - 25						
D	Delay is noticeable and irritating, increased risk taking	> 25 - 35						
E	Delay approaches tolerance level, risk taking likely	> 35 - 50						
F	Delay exceeds tolerance level, high likelihood of risk taking	> 50						
Source: High	Source: <u>Highway Capacity Manual</u> , HCM 2010							

Level of service (LOS) criteria for signalized intersections is shown in Table 11.

TABLE 11								
LEVEL OF SERVICE DESCRIPTIONS FOR SIGNALIZED INTERSECTIONS								
Level of Service	Description	Control Delay (sec. /veh.)						
Α	Volume-to-capacity ratio is low, progression is extremely favorable, most vehicles travel through intersection without stopping.	0 - 10						
В	Volume-to-capacity ratio is low, progression is good and/or short cycle lengths is present, more vehicles stop than for LOS A.	> 10 – 20						
С	Progression is favorable and/or cycle length is moderate, number of vehicles stopping is significant although many still pass through intersection without stopping.	> 20 – 35						
D	Volume-to-capacity ratio is high, progression is ineffective, cycle length is long, many vehicles stop.	> 35 – 55						
E	Volume-to-capacity ratio is high, progression is unfavorable, cycle length is long, many vehicles stop.	> 55 – 80						
F	Volume-to-capacity ratio is very high, progression is very poor, cycle length is long, most cycles fail to clear the queue.	> 80						
Source: High	way Capacity Manual, HCM 2010							

VII. CONCLUSIONS AND RECOMMENDATIONS

A. Introduction

Based upon a review of the existing and future proposed conditions within the study area, we offer the conclusions and recommendations shown below.

B. General Conclusions and Recommendations

 Access to Columbia Pike for Tollgate Village can be provided at level of service D or better via the existing Tollgate Boulevard and Secondary Access (North) routes. Secondary access to Declaration Way as currently shown on the Tollgate Village Concept Plan will provide additional connectivity for Tollgate Village and Independence High School but is not necessary to address traffic congestion due to Tollgate Village and will not result in a significant change or improvement to the level of service at the intersections on Columbia Pike.

C. Columbia Pike at Tollgate Boulevard

- The traffic signal and turn lane improvements that were constructed at this intersection by the Tollgate Village developer in 2017 provide additional capacity and traffic control for the full build-out of Tollgate Village. In the future, traffic operations at this intersection are expected to be characterized by overall level of service B during the a.m. and p.m. peak hours with individual turning movements operating at level of service D or better.
- No additional laneage or traffic control modifications are recommended for this intersection to mitigate the impact of the Tollage Village development.

D. Columbia Pike at Secondary Access (North)

- The Columbia Pike access located north of Tollgate Boulevard in the area of the existing Shelter Insurance Office Building was constructed by the Tollgate Village developer in 2018.
- Based on previous traffic impact study findings and recommendations, the Secondary Access (North) is restricted to right-in/right-out only access at Columbia Pike due to the width of Columbia Pike and proximity to the bridge over the West Harpeth River.
- The Secondary Access (North) should be modified to provide full turning movement access when Columbia Pike has been widened by TDOT to consist of a five-lane roadway to the north of Tollgate Village and across the West Harpeth River.
- Future widening of Columbia Pike by TDOT should provide the extension of the
 existing five-lane section north of Tollgate Village and across the West Harpeth River.
 The extension of this roadway section will provide a northbound left turn lane for the
 North Access to Tollgate Village.
- When the North Access to Tollgate Village is converted to provide full turning
 movement access, a southbound right turn lane should be constructed on Columbia
 Pike. The final design of the Columbia Pike widening, the West Harpeth River
 crossing, and impacts to adjacent utilities and floodways/floodplains should be
 considered when determining the feasibility and final design of this right turn lane.

E. Columbia Pike at Declaration Way

- Williamson County Schools should continue to utilize a traffic control officer to direct traffic at this intersection during peak arrival and dismissal periods. Based upon the high volume and peaking characteristics of the school traffic, a permanent traffic signal installation could be considered as an alternative to the continued use of a traffic control officer.
- The existing Independence High School traffic uses the shoulder of Columbia Pike as a southbound right turn lane during the peak morning arrival period. The existing southbound right turn lane on Columbia Pike at Declaration Way could be extended to have a length of 500 feet with a taper length of 100 feet as part of future TDOT 3R (Resurfacing, Restoring, or Rehabilitation) projects on Columbia Pike to be reflective of the actual roadway usage in the area.
- As previously discussed, a secondary access from Tollgate Village to Declaration Way
 is shown in the current Tollgate Village Concept Plan. This access will provide
 additional connectivity for Tollgate Village and Independence High School but is not
 necessary to address traffic congestion due to Tollgate Village and will not result in a
 significant change or improvement to the level of service at other intersections on
 Columbia Pike.

F. Tollgate Village Secondary Access (South)

- The Tollgate Village developer, Town staff, and Williamson County Schools staff should continue to coordinate on the agreements necessary to obtain right-of-way or an easement to access and use Declaration Way between the proposed Secondary Access (South) and Columbia Pike.
- The Secondary Access (South) does not need to be constructed as part of any current phase of development at Tollgate Village because the access is not necessary to address traffic congestion, will not result in a significant change or improvement to the level of service at other intersections on Columbia Pike, and because the agreements involving the Town of Thompson's Station and Williamson County Schools have not been approved by the appropriate decision-making bodies and have not been prepared or executed.
- A schedule for the construction of the Secondary Access (South) should be established
 when the appropriate approvals are received from the appropriate decision-making
 bodies at the Town of Thompson's Station and Williamson County Schools and when
 the necessary agreements have been prepared and executed.
- When the Tollgate Village Secondary Access (South) is constructed, new pavement markings consistent with the MUTCD should be installed on Declaration Way between Columbia Pike and the South Access.
- The intersection of Declaration Way and the Secondary Access (South) should operate
 as a two-way stop control intersection. The South Access should be the minor street
 with stop control and Declaration Way should be the major street without stop control.

APPENDIX

- A. TRAFFIC COUNTS
- **B. TRIP GENERATION WORKSHEETS**
- C. TRAFFIC ASSIGNMENT WORKSHEETS
- D. CAPACITY ANALYSIS WORKSHEETS EXISTING CONDITIONS
- E. CAPACITY ANALYSIS WORKSHEETS 2022 BACKGROUND CONDITIONS
- F. CAPACITY ANALYSIS WORKSHEETS 2022 TOTAL TRAFFIC CONDITIONS
- G. CAPACITY ANALYSIS WORKSHEETS 2027 BACKGROUND CONDITIONS
- H. CAPACITY ANALYSIS WORKSHEETS 2027 TOTAL TRAFFIC CONDITIONS

APPENDIX A TRAFFIC COUNTS

Location: Columbia Pk @ Tollgate Blvd

Time Interval: AM

	Co	lumbia P	ike	Co	lumbia P	ike	To	ollgate Bl	vd		-	
	NB	NB	NB	SB	SB	SB	EB	EB	EB	WB	WB	WB
Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
0:00 - 0:15												
0:15 - 0:30												
0:30 - 0:45												
0:45 - 1:00												
1:00 - 1:15												
1:15 - 1:30												
1:30 - 1:45												
1:45 - 2:00												
2:00 - 2:15												
2:15 - 2:30												
2:30 - 2:45												
2:45 - 3:00												
3:00 - 3:15	 											
3:15 - 3:30												
3:30 - 3:45												
3:45 - 4:00												
4:00 - 4:15												
4:15 - 4:30												
4:30 - 4:45												
4:45 - 5:00												
5:00 - 5:15												
5:15 - 5:30												
5:30 - 5:45												
5:45 - 6:00												
6:00 - 6:15	0	155			4.5	4	40		_			
6:15 - 6:30	8	155			45	1	12		8 12			
	7	182			61	1	18					
6:30 - 6:45	7	212			52	8	30		18			
6:45 - 7:00	18	223			111	6	25		31			
7:00 - 7:15	23	171			241	5	35		27			
7:15 - 7:30	21	187			188	8	37		56			
7:30 - 7:45	24	293			71	16	48		24			
7:45 - 8:00	36	223			78	9	33		20			
8:00 - 8:15	26	198			99	10	32		11			
8:15 - 8:30	18	155			101	8	46		18			
8:30 - 8:45	18	199			84	11	42		24			
8:45 - 9:00	22	173			102	13	29		12			
9:00 - 9:15												
9:15 - 9:30												
9:30 - 9:45												
9:45 - 10:00	ļ											
10:00 - 10:15												
10:15 - 10:30												
10:30 - 10:45												
10:45 - 11:00												
11:00 - 11:15												
11:15 - 11:30												
11:30 - 11:45												
11:45 - 12:00												

Location: Columbia Pk @ Tollgate Blvd

Time Interval: PM

	Co	olumbia P	ike	Co	olumbia P	ike	T	ollgate Bl	vd		_	
	NB	NB	NB	SB	SB	SB	EB	EB	EB	WB	WB	WB
Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
12:00 - 12:15	Lon	IIIIG	rugiit	Lon	TITIC	rtigitt	Lon	TITIC	rtigitt	Lon	Tilla	ragin
12:15 - 12:30												
12:30 - 12:45												
12:45 - 13:00												
13:00 - 13:15												
13:15 - 13:30												
13:30 - 13:45												
13:45 - 14:00												
14:00 - 14:15	24	132			132	20	27		10			
14:15 - 14:30	23	119			171	21	13		25			
14:30 - 14:45	18	100			166	21	19		22			
14:45 - 15:00	29	129			165	18	20		30			
15:00 - 15:15	26	221			157	26	21		18			
15:15 - 15:30	23	151			168	21	26		21			
15:30 - 15:45	21	113			188	30	13		29			
15:45 - 16:00	26	132			182	25	13		24			
16:00 - 16:15	16	120			231	31	16		17			
16:15 - 16:30	28	120			243	31	12		16			
16:30 - 16:45	21	123			238	24	15		39			
16:45 - 17:00	29	163			220	42	16		21			
17:00 - 17:15	14	177			259	44	22		33			
17:15 - 17:30	26	161			248	36	12		27			
17:30 - 17:45	16	169			198	39	21		22			
17:45 - 18:00	22	165			166	32	17		24			
18:00 - 18:15	14	131			184	28	21		19			
18:15 - 18:30	12	114			188	36	15		18			
18:30 - 18:45	19	98			164	37	18		21			
18:45 - 19:00	11	74			115	33	12		10			
19:00 - 19:15									- 10			
19:15 - 19:30												
19:30 - 19:45												
19:45 - 20:00												
20:00 - 20:15												
20:15 - 20:30												
20:30 - 20:45												
20:45 - 21:00												
21:00 - 21:15												
21:15 - 21:30												
21:30 - 21:45												
21:45 - 22:00												
22:00 - 22:15												
22:15 - 22:30												
22:30 - 22:45												
22:45 - 23:00	İ											Ī
23:00 - 23:15												
23:15 - 23:30												
23:30 - 23:45												
23:45 - 24:00	<u> </u>											<u> </u>

Location: Columbia Pk @ Tollgate Blvd

A.M. Peak Hour (6:00 - 9:00)

	Со	lumbia P	ike	Co	lumbia P	ike	To	ollgate Bl	vd		-	
	NB	NB	NB	SB	SB	SB	EB	EB	EB	WB	WB	WB
Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
6:45 - 7:00	18	223	0	0	111	6	25	0	31	0	0	0
7:00 - 7:15	23	171	0	0	241	5	35	0	27	0	0	0
7:15 - 7:30	21	187	0	0	188	8	37	0	56	0	0	0
7:30 - 7:45	24	293	0	0	71	16	48	0	24	0	0	0
6:45 - 7:45	86	874	0	0	611	35	145	0	138	0	0	0

Peak Hour Factor: 0.941

P.M. Peak Hour (2:00 - 7:00)

	Co	lumbia P	ike	Co	lumbia P	ike	To	ollgate Bl	vd		-	
	NB	NB	NB	SB	SB	SB	EB	EB	EB	WB	WB	WB
Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
16:45 - 17:00	29	163	0	0	220	42	16	0	21	0	0	0
17:00 - 17:15	14	177	0	0	259	44	22	0	33	0	0	0
17:15 - 17:30	26	161	0	0	248	36	12	0	27	0	0	0
17:30 - 17:45	16	169	0	0	198	39	21	0	22	0	0	0
16:45 - 17:45	85	670	0	0	925	161	71	0	103	0	0	0

Peak Hour Factor: 0.918

Location: Columbia Pk @ Secondary Access (North)

Time Interval: AM

Time		Co	olumbia P	ike	Сс	olumbia P	ike	Second	dary Access	(North)		_	
Time											WB	WB	WB
0:00 - 0:16 0:15 - 0:30 0:15 - 0:30 0:30 - 0:45 0:45 - 1:00 1:100 - 1:15 1:15 - 1:30 1:145 - 1:30 1:145 - 1:30 1:145 - 1:30 1:15 - 1:30 1:145 - 2:00 2:00 - 2:15 2:15 - 2:30 2:30 - 2:45 2:45 - 2:00 2:30 - 2:45 2:45 - 3:00 3:30 - 3:15 3:315 - 3:30 3:30 - 3:15 3:33 - 3:46 3:33 - 3:46 3:33 - 3:46 3:33 - 3:46 3:30 - 3:46 3:30 - 3:46 3:40 - 4:15 4:15 - 4:30 4:45 - 4:00 4:15 - 4:15 4:15 - 6:30 5:15 - 6:30 5:15 - 6:30 5:15 - 6:30 6:30 - 6:15 6:30 - 6:15 6:30 - 6:15 6:30 - 0 198 6:2 0 0 0 6:30 - 6:45 6:30 0 0 198 6:2 0 0 0 6:30 - 6:45 6:30 0 0 198 6:2 0 0 0 6:30 - 6:45 6:30 0 0 198 6:2 0 0 0 6:30 - 6:45 6:30 0 0 198 6:2 0 0 0 7:15 - 7:30 0 0 249 122 1 1 0 0 7:15 - 7:30 0 0 249 122 1 1 0 0 7:15 - 7:30 0 0 249 122 1 1 0 0 7:15 - 7:30 0 0 249 122 1 1 0 0 7:15 - 7:30 0 0 224 110 0 0 0 8:15 - 8:30 110 0 0 0 8:15 - 8:30 110 0 0 0 8:15 - 8:30 110 0 0 0 8:15 - 8:30 110 0 0 0 8:15 - 8:30 110 0 0 0 8:15 - 8:30 110 0 0 0 8:15 - 8:30 110 0 0 0 8:15 - 9:30 110 0 0 0 8:15 - 9:30 110 0 0 0 8:15 - 9:30 110 0 0 0 8:15 - 9:30 110 0 0 0 110 0 0 0 110 0 0 0 110 0 0 0 110 0 0 0 110 0 0 0 110 0 0 0 110 0 0 0 110 0 0 0 110 0 0 0 110 0 0 0 110 0 0 0 110 0 0 0 111 0 0 0 111 0 0 0 111 0 0 0 111 0 0 0 111 0 0 0 0	Time												
0:15 - 0:30		Lon	11114	rugiii	Lon	11114	rugiii	Loit	11114	rugiii	Loit	111114	rugiii
0:30 - 045 0:30 - 045 1:00 - 1:15 1:10 - 1:15 1:115 - 1:30 1:145 - 1:30 1:45 - 2:00 2:15 - 2:30 2:15 - 2:30 2:30 - 2:45 2:45 - 3:00 3:30 - 3:15 3:315 - 3:30 3:30 - 3:45 3:45 - 4:00 4:15 - 4:30 4:45 - 6:00 5:30 - 5:15 5:30 - 5:15 5:30 - 5:15 5:30 - 5:15 5:30 - 5:15 5:30 - 5:15 5:30 - 5:15 5:30 - 5:15 5:30 - 5:15 5:30 - 5:15 5:30 - 5:15 5:30 - 5:15 5:30 - 5:15 5:30 - 5:15 5:30 - 5:30 5:30 - 5:45 5:30													
0.45 - 1:00 1:100 - 1:15 1:15 - 1:30 1:15 - 1:30 1:15 - 1:30 1:30 - 1:45 1:45 - 2:00 2:00 - 2:15 2:15 - 2:30 2:30 - 2:45 2:45 - 3:00 3:15 - 3:30 3:15 - 3:30 3:45 - 4:00 4:00 - 4:15 4:15 - 4:30 4:30 - 4:45 4:45 - 5:00 5:00 - 5:15 5:16 - 5:30 5:30 - 5:45 5:45 - 6:00 6:15 - 6:30 6:15 - 6:30 6:15 - 0:30 6:30 6:30 - 0:30 6:30 - 0:30 6:30 - 0:30 6:30 - 0:30 6:30 - 0:30 6:30 - 0:30 6:30 - 0:30													
1:00 - 1:15													
1:15 - 1:30													-
1:30 - 1:45													
1.45 - 2.00													
2:00 - 2:15													
2:15 - 2:30													
2:30 - 2:45													
2:45 - 3:00													
3:00 - 3:15													
3:15 - 3:30 3:30 - 3:45 3:30 - 3:45 3:30 - 3:45 4:15 - 4:30 4:15 - 4:30 4:45 - 5:00 5:00 - 5:15 5:16 - 5:30 5:30 - 5:45 5:45 - 6:00 6:15 - 6:30 0 198 0 62 0 0 0 0 0 0 6:15 - 6:30 0 198 0 62 0 0 0 0 0 0 6:15 - 6:30 0 198 0 62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
3:30 - 3:45													
3:45 - 4:00	3:15 - 3:30												
4:00 - 4:15													
4:15 - 4:30 4:30 - 4:45 5:00 - 5:15 5:15 - 5:30 5:15 - 5:30 6:00 - 6:15 0	3:45 - 4:00												
4:30 - 4:45 4:45 - 5:00 5:00 - 5:15 5:00 - 5:15 5:15 - 5:30 5:15 - 5:30 5:05 - 5:15 5:15 - 5:30 5:15 - 5:30 5:30 - 5:45 5:45 - 6:00 5:45 - 6:00 6:00 - 6:15 0 <t< td=""><td>4:00 - 4:15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	4:00 - 4:15												
4:45 - 5:00 5:00 - 5:15 5:05 - 5:30 5:30 - 5:45 5:45 - 6:00 6:00 - 6:15 6:30 - 6:45 1 242 58 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4:15 - 4:30												
4:45 - 5:00 5:00 - 5:15 5:05 - 5:30 5:30 - 5:45 5:45 - 6:00 6:00 - 6:15 6:30 - 6:45 1 242 58 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4:30 - 4:45												
5:00 - 5:15 5:15 - 5:30 5:15 - 5:30 5:15 - 5:30 5:15 - 5:30 5:15 - 5:30 5:15 - 5:30 5:15 - 5:30 5:15 - 5:30 5:15 - 5:30 5:15 - 5:30 6:15 - 6:30 6:15 - 6:30 0 198 62 0 0 0 0 6:15 - 6:30 0 198 62 0													
5:15 - 5:30 5:30 - 5:45 5:30 - 5:45 5:45 - 6:00 5:45 - 6:00 5:45 - 6:00 6:00 - 6:15 0 169 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
5:30 - 5:45 5:45 - 6:00 6:00 - 6:15 0 169 43 0 0 0 6:00 - 6:15 0 198 62 0 0 0 6:30 - 6:45 1 242 58 1 0 0 0 6:45 - 7:00 0 249 122 1 1 0 0 6:45 - 7:00 0 249 122 1 1 0 0 0 7:00 - 7:15 0 203 249 1 0 0 0 7:00 - 7:15 0 203 249 1 0 0 0 7:00 - 7:15 0 203 249 1 0 0 0 0 7:00 - 7:15 0 203 249 1 0 0 0 0 7:00 - 7:15 0 203 249 1 0 <td></td>													
5:45 - 6:00 6:00 - 6:15 0 169 43 0 0 0 0 6:00 - 6:15 0 169 43 0 0 0 0 6:15 - 6:30 0 1 9 0 <													
6:00 - 6:15 0 169 43 0 0 0 0 6:15 - 6:30 0 198 62 0 0 0 0 6:30 - 6:45 1 242 58 1 0 0 0 6:45 - 7:00 0 249 122 1 1 0 0 0 6:45 - 7:00 0 249 122 1 1 0 0 0 0 17:00 - 7:15 0 203 249 1 0													
6:15 - 6:30		n	160			//3	Λ	Λ		n			
6:30 - 6:45													
6:45 - 7:00 0 249 122 1 1 0													
7:00 - 7:15 0 203 249 1 0 0 0 7:15 - 7:30 0 224 199 1 0 0 0 7:45 - 7:30 0 224 199 1 0 0 0 0 7:45 - 8:30 0 343 84 0 0 0 0 0 0 7:45 - 8:30 0 1 256 85 1 0 0 0 0 0 0 8:15 - 8:30 0 201 105 1 0 0 0 0 0 0 8:35 - 8:30 0 201 105 1 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td></t<>										_			
7:15 - 7:30 0 224 199 1 0 0 0 7:30 - 7:45 0 343 84 0 0 0 0 7:45 - 8:00 1 256 85 1 0 0 0 8:00 - 8:15 0 232 112 1 0 0 0 8:15 - 8:30 0 201 105 1 0 0 0 8:30 - 8:45 0 240 97 2 1 0 0 0 8:45 - 9:00 0 202 116 0 0 1 9 9:00 - 9:15 9:00 - 9													
7:30 - 7:45 0 343 84 0 0 0													
7:45 - 8:00 1 256 85 1 0 0 0 8:00 - 8:15 0 232 112 1 0 0 0 0 8:15 - 8:30 0 201 105 1 0<													
8:00 - 8:15 0 232 112 1 0 0 0 8:15 - 8:30 0 201 105 1 0 0 0 8:30 - 8:45 0 240 97 2 1 0 0 8:45 - 9:00 0 202 116 0 0 1 0 9:00 - 9:15 9:15													
8:15 - 8:30 0 201 105 1 0 0 8 8:30 - 8:45 0 240 97 2 1 0 0 8 8:45 - 9:00 0 202 116 0 0 1 9 9 9 9 1 9 9 9 9 1 9 9 9 9 9 9 9 1 9 <t< td=""><td></td><td>· ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		· ·											
8:30 - 8:45 0 240 97 2 1 0 9 9 9 2 1 0 0 9 9 9 1 0 0 1 0 0 1 0 0 0 1 0												-	ļ
8:45 - 9:00 0 202 116 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
9:00 - 9:15 9:15 - 9:30 9:30 - 9:45 9:45 - 10:00 10:00 - 10:15 10:15 - 10:30 10:30 - 10:45 10:45 - 11:00 11:00 - 11:15 11:15 - 11:30 11:30 - 11:45													
9:15 - 9:30 9:30 - 9:45 9:45 - 10:00 10:00 - 10:15 10:15 - 10:30 10:30 - 10:45 10:45 - 11:00 11:00 - 11:15 11:15 - 11:30 11:30 - 11:45		Ü	202			116	0	0		1		ļ	ļ
9:30 - 9:45 9:45 - 10:00 10:00 - 10:15 10:15 - 10:30 10:30 - 10:45 10:45 - 11:00 11:00 - 11:15 11:15 - 11:30 11:30 - 11:45													
9:45 - 10:00													
10:00 - 10:15													
10:15 - 10:30													
10:30 - 10:45													
10:45 - 11:00													
11:00 - 11:15	10:30 - 10:45												
11:15 - 11:30 11:30 - 11:45	10:45 - 11:00												
11:15 - 11:30 11:30 - 11:45	11:00 - 11:15												
11:30 - 11:45													
	11:45 - 12:00											i e	i e

Location: Columbia Pk @ Secondary Access (North)

Time Interval: PM

	Co	olumbia P	ike	Сс	olumbia P	ike	Second	lary Access	s (North)		-	
	NB	NB	NB	SB	SB	SB	EB	EB	EB	WB	WB	WB
Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
12:00 - 12:15												
12:15 - 12:30												
12:30 - 12:45												
12:45 - 13:00												
13:00 - 13:15												
13:15 - 13:30												
13:30 - 13:45												
13:45 - 14:00												
14:00 - 14:15	0	156			151	1	0		1			
14:15 - 14:30	0	131			192	1	0		0			
14:30 - 14:45	1	115			186	0	0		1			
14:45 - 15:00	0	155			181	0	0		1			
15:00 - 15:15	1	236			183	0	0		1			
15:15 - 15:30	0	182			188	0	0		0			
15:30 - 15:45	0	125			219	0	0		0			
15:45 - 16:00	0	145			207	0	0		0			
16:00 - 16:15	0	137			262	1	0		0			
16:15 - 16:30	0	128			274	0	0		2			
16:30 - 16:45	0	141			259	0	0		2			
16:45 - 17:00	0	179			261	0	0		2			
17:00 - 17:15	0	197			304	0	0		2			
17:15 - 17:30	0	175			278	1	0		0			
17:30 - 17:45	0	190			236	0	0		0			
17:45 - 18:00	0	180			199	0	0		0			
18:00 - 18:15	0	151			208	0	0		0			
18:15 - 18:30	0	134			227	0	0		0			
18:30 - 18:45	0	110			203	0	0		0			
18:45 - 19:00	0	89			146	0	0		0			
19:00 - 19:15												
19:15 - 19:30												
19:30 - 19:45												
19:45 - 20:00												
20:00 - 20:15												
20:15 - 20:30												
20:30 - 20:45												
20:45 - 21:00												
21:00 - 21:15												
21:15 - 21:30												
21:30 - 21:45												
21:45 - 22:00												
22:00 - 22:15												
22:15 - 22:30												
22:30 - 22:45												
22:45 - 23:00												
23:00 - 23:15												
23:15 - 23:30												
23:30 - 23:45												
23:45 - 24:00												

Location: Columbia Pk @ Secondary Access (North)

A.M. Peak Hour (6:30 - 9:00)

	Co	lumbia P	ike	Co	lumbia P	ike	Second	lary Access	(North)		-	
	NB	NB	NB	SB	SB	SB	EB	EB	EB	WB	WB	WB
Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
6:45 - 7:00	0	249	0	0	122	1	1	0	0	0	0	0
7:00 - 7:15	0	203	0	0	249	1	0	0	0	0	0	0
7:15 - 7:30	0	224	0	0	199	1	0	0	0	0	0	0
7:30 - 7:45	0	343	0	0	84	0	0	0	0	0	0	0
6:45 - 7:45	0	1019	0	0	654	3	1	0	0	0	0	0

Peak Hour Factor: 0.925

P.M. Peak Hour (2:00 - 7:00)

,	Co	lumbia P	ike	Co	lumbia P	ike	Second	lary Access	(North)		-	
	NB	NB	NB	SB	SB	SB	EB	EB	EB	WB	WB	WB
Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
16:45 - 17:00	0	179	0	0	261	0	0	0	2	0	0	0
17:00 - 17:15	0	197	0	0	304	0	0	0	2	0	0	0
17:15 - 17:30	0	175	0	0	278	1	0	0	0	0	0	0
17:30 - 17:45	0	190	0	0	236	0	0	0	0	0	0	0
16:45 - 17:45	0	741	0	0	1079	1	0	0	4	0	0	0

Peak Hour Factor: 0.907

Location: Columbia Pk @ Declaration Way

Time Interval: AM

		5			5				• •	ı		
1		lumbia P			lumbia P			laration \			-	
	NB	NB	NB	SB	SB	SB	EB	EB	EB	WB	WB	WB
Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
0:00 - 0:15												
0:15 - 0:30												
0:30 - 0:45												
0:45 - 1:00												
1:00 - 1:15												
1:15 - 1:30												
1:30 - 1:45												
1:45 - 2:00												
2:00 - 2:15												
2:15 - 2:30												
2:30 - 2:45												
2:45 - 3:00												
3:00 - 3:15												
3:15 - 3:30												
3:30 - 3:45												
3:45 - 4:00												
4:00 - 4:15												
4:15 - 4:30												
4:30 - 4:45												
4:45 - 5:00												
5:00 - 5:15												
5:15 - 5:30												
5:30 - 5:45												
5:45 - 6:00												
6:00 - 6:15	17	156			46	7	2		2			
6:15 - 6:30	24	185			65	8	3		8			
6:30 - 6:45	46	215			56	13	1		2			
6:45 - 7:00	152	238			83	53	5		20			
7:00 - 7:15	121	187			88	176	16		80			
7:15 - 7:30	194	156			99	148	47		75			
7:30 - 7:45	95	288			82	20	45		77			
7:45 - 8:00	9	241			90	4	4		5			
8:00 - 8:15	5	223			104	5	3		9			
8:15 - 8:30	7	167			116	5	2		5			
8:30 - 8:45	4	215			104	4	2		3			
8:45 - 9:00	6	193			118	1	5		4			
9:00 - 9:15						·			-			
9:15 - 9:30												
9:30 - 9:45												
9:45 - 10:00												
10:00 - 10:15												
10:15 - 10:30												
10:30 - 10:45												
10:45 - 11:00												
11:00 - 11:15												
11:15 - 11:30												
11:30 - 11:45												
11:45 - 12:00												
10 12.00								l		l	l	

Location: Columbia Pk @ Declaration Way

Time Interval: PM

NB		Co	olumbia P	ike	Co	lumbia P	ike	Dec	claration \	Nav		_	
Time											WB	WB	WB
12:00 - 12:15	Time												Right
12:15 - 12:30 12:30 - 12:45 12:30 - 12:45 13:00 13:00 - 13:15 13:15 - 13:30 13:30 - 13:45 13:45 - 14:00 14:15 - 28 15:1													g
12:30 - 12:45													
12:45 - 13:00													
13:00 - 13:15													
13:15 - 13:30													
13:30 - 13:45													
13:45 - 14:00													-
14:00 - 14:15 28 151 137 7 0 15 14:15 - 14:30 37 142 171 21 6 2 14:43 - 14:45 21 114 179 12 6 26 14:45 - 15:00 18 117 179 10 41 67 15:00 - 15:15 29 124 125 9 128 201 15:16 - 15:30 23 116 218 11 55 81 15:30 - 15:45 22 106 200 22 27 55 15:45 - 16:00 22 138 189 12 18 37 16:00 - 16:15 21 123 230 15 13 21 16:15 - 16:30 13 136 250 13 16 25 16:30 - 16:45 27 134 267 10 8 18 16:45 - 17:00 27 172 225 14 18 37 17:00 - 17:15 11 183 286 11 14 25 17:15 - 17:30 18 175 258 12 10 21 17:30 - 17:45 23 151 209 <													
14:15 - 14:30 37 142 171 21 6 2 14:30 - 14:45 21 114 179 12 6 26 14:45 - 15:00 18 117 179 12 6 26 15:00 - 15:15 29 124 125 9 128 201 15:15 - 15:30 23 116 218 11 55 81 15:30 - 15:45 22 106 200 22 27 55 15:45 - 16:00 22 138 189 12 18 37 16:00 - 16:15 21 123 230 15 13 21 16:15 - 16:30 13 136 250 13 16 25 16:30 - 16:45 27 134 267 10 8 18 16:45 - 17:00 27 172 225 14 18 37 17:00 - 17:15 11 183 286 11 14 25 17:15 - 17:30 18 175 258 12 10 21 17:35 - 17:30 18 175 258 12 10 21 17:35 - 18:30 6 114 210 <		28	151			137	7	0		15			
14:30 - 14:45 21 114 179 12 6 26 14:45 - 15:00 18 117 179 10 41 67 15:00 - 15:15 29 124 125 9 128 201 15:15 - 15:30 23 116 218 11 55 81 15:30 - 15:45 22 106 200 22 27 55 16:45 - 16:00 22 138 189 12 18 37 16:00 - 16:15 21 123 230 15 13 21 16:15 - 16:30 13 136 250 13 16 25 16:30 - 16:45 27 134 267 10 8 18 16:45 - 17:00 27 172 225 14 18 37 17:00 - 17:15 11 183 286 11 14 25 17:15 - 17:30 18 175 258 12 10 21 17:30 - 17:45 23 151 209 17 32 47 17:35 - 18:30 22 164 175 11 18 21 18:16 - 18:30 6 114 210								_					
14:45 - 15:00 18 117 179 10 41 67 15:00 - 15:15 29 124 125 9 128 201 15:15 - 15:30 23 116 218 11 55 81 15:30 - 15:45 22 106 200 22 27 55 15:45 - 16:00 22 138 189 12 18 37 16:00 - 16:15 21 123 230 15 13 21 16:15 - 16:30 13 136 250 13 16 25 16:35 - 16:30 13 136 250 13 16 25 16:35 - 17:30 13 136 267 10 8 18 16:45 - 17:00 27 172 225 14 18 37 17:00 - 17:15 11 183 286 11 14 25 17:30 - 17:45 23 151 209 17 32 47 17:45 - 18:00 22 164 175 11 18 21 18:00 - 18:15 9 140 201 4 9 19 18:15 - 18:30 6 114 210													
15:00 - 15:15													
15:15 - 15:30 23 116 218 11 55 81 15:30 - 15:45 22 106 200 22 27 55 15:45 - 16:00 22 138 189 12 18 37 16:00 - 16:15 21 123 230 15 13 21 16:15 - 16:30 13 136 250 13 16 25 16:30 - 16:45 27 134 267 10 8 18 16:45 - 17:00 27 172 225 14 18 37 17:00 - 17:15 11 183 286 11 14 25 17:30 - 17:45 23 151 209 17 32 47 17:45 - 18:00 22 164 175 11 18 21 18:00 - 18:15 9 140 201 4 9 19 18:30 - 18:45 5 113 173 4 7 19 18:45 - 19:00 3 82 124 2 3 7 19:00 - 19:15 9 140 201 4 7 19 18:45 - 19:00 3 82 124 2													
15:30 - 15:45													
15:45 - 16:00													
16:00 - 16:15													<u> </u>
16:15 - 16:30													
16:30 - 16:45 27 134 267 10 8 18 16:45 - 17:00 27 172 225 14 18 37 17:00 - 17:15 11 183 286 11 14 25 17:15 - 17:30 18 175 258 12 10 21 17:30 - 17:45 23 151 209 17 32 47 17:45 - 18:00 22 164 175 11 18 21 18:00 - 18:15 9 140 201 4 9 19 18:30 - 18:45 5 113 173 4 7 19 18:45 - 19:00 3 82 124 2 3 7 19:00 - 19:15 19:15 19:15 19:30 19:45 19:30 - 19:45 19:30 19:45 19:45 19:45 20:00 - 20:15 20:30 20:30 - 20:45 20:45 20:45 20:45 - 21:00 21:15 - 21:30 21:30 - 21:45 22:45 - 22:00 22:00 - 22:15 22:15 - 22:30 22:45 - 22:00 22:45 - 22:00 22:30 - 23:45 22:45 - 23:00 22:45 - 23:00 22:45 - 23:00 23:15 - 23:30 23:15 - 23:30													
16:45 - 17:00 27 172 225 14 18 37 17:00 - 17:15 11 183 286 11 14 25 17:15 - 17:30 18 175 258 12 10 21 17:30 - 17:45 23 151 209 17 32 47 17:45 - 18:00 22 164 175 11 18 21 18:00 - 18:15 9 140 201 4 9 19 18:30 - 18:45 5 113 173 4 7 19 18:45 - 19:00 3 82 124 2 3 7 19:00 - 19:15 19:30 19:30 - 19:45 19:30 - 19:45 19:45 - 20:00 19:30 - 20:45 19:30 - 20:45 19:30 - 20:45 20:45 - 21:00 21:00 - 21:15 19:15 - 21:30 19:15 - 21:30 21:45 - 22:30 22:15 - 22:30 22:15 - 22:30 22:15 - 22:30 22:30 - 22:45 22:45 - 23:00 22:30 - 23:15 23:15 - 23:30													
17:00 - 17:15													
17:15 - 17:30 18 175 258 12 10 21 17:30 - 17:45 23 151 209 17 32 47 17:45 - 18:00 22 164 175 11 18 21 18:00 - 18:15 9 140 201 4 9 19 18:15 - 18:30 6 114 210 2 3 5 18:30 - 18:45 5 113 173 4 7 19 18:45 - 19:00 3 82 124 2 3 7 19:00 - 19:15 19:30 19:45 19:45 19:45 19:30 - 19:45 19:45 - 20:00 19:45 - 20:30 19:30 - 20:45 19:30 - 20:45 20:45 - 21:00 20:45 - 21:00 20:45 - 21:00 19:45 - 20:30													
17:30 - 17:45 23 151 209 17 32 47 17:45 - 18:00 22 164 175 11 18 21 18:00 - 18:15 9 140 201 4 9 19 18:15 - 18:30 6 114 210 2 3 5 18:30 - 18:45 5 113 173 4 7 19 18:45 - 19:00 3 82 124 2 3 7 19:00 - 19:15 9 19 19 19:30 - 19:45 9 19 19 19:45 - 20:00 9 19 19 20:00 - 20:15 9 19 19 20:30 - 20:45 9 19 19 20:45 - 21:00 9 19 19 21:15 - 21:30 9 19 19 21:45 - 22:00 9 19 19 22:00 - 22:15 9 19 19 22:45 - 23:00 9 19 19 23:15 - 23:30 9 19 19 18:45 - 19:00 19 19 19 19 19:45 - 20:00 19 19 19 19 19:45 - 20:00													
17:45 - 18:00 22 164 175 11 18 21 18:00 - 18:15 9 140 201 4 9 19 18:15 - 18:30 6 114 210 2 3 5 18:30 - 18:45 5 113 173 4 7 19 18:45 - 19:00 3 82 124 2 3 7 19:00 - 19:15 19:00 - 19:15 19:15 - 19:30 19:30 - 19:45 19:30 - 19:45 19:45 - 20:00 19:45 - 20:00 19:45 - 20:30 19:45 - 20:30 20:30 - 20:45 20:45 - 21:00 19:45 - 21:30													
18:00 - 18:15 9 140 201 4 9 19 18:15 - 18:30 6 114 210 2 3 5 18:30 - 18:45 5 113 173 4 7 19 18:45 - 19:00 3 82 124 2 3 7 19:00 - 19:15 9 19:30 19:30 19:30 19:30 19:30 19:30 19:30 19:30 19:30 19:45 19:45 20:30 19:45 19:45 19:45 20:30 19:45 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
18:15 - 18:30 6 114 210 2 3 5 18:30 - 18:45 5 113 173 4 7 19 18:45 - 19:00 3 82 124 2 3 7 19:00 - 19:15 19:00 - 19:15 19:15 - 19:30 19:30 - 19:45 19:30 - 19:45 19:45 - 20:00 19:20 - 20:15 19:20 - 20:15 20:00 - 20:15 20:00 - 20:45 19:20 - 20:20 19:20 - 20:20 20:45 - 21:00 20:45 - 21:30 19:20 - 21:15 19:20 - 21:15 21:30 - 21:45 21:45 - 22:00 19:20 - 22:15 19:20 - 22:15 22:00 - 22:15 22:30 - 22:45 19:20 - 22:45 19:20 - 22:15 22:30 - 22:45 22:30 - 22:45 19:20 - 22:15 19:20 - 22:15 23:00 - 23:15 23:15 - 23:30 19:20 - 23:15 19:20 - 23:15 23:15 - 23:30 19:20 - 23:15 19:20 - 23:15 19:20 - 23:15													
18:30 - 18:45 5 113 173 4 7 19 18:45 - 19:00 3 82 124 2 3 7 19:00 - 19:15 19:15 - 19:30 19:35 - 19:45 19:45 - 20:00 19:45 - 20:00 20:00 - 20:15 20:15 - 20:30 20:15 - 20:30 20:30 - 20:45 20:45 - 21:00 21:00 - 21:15 21:15 - 21:30 21:45 - 22:00 21:45 - 22:00 22:00 - 22:15 22:15 - 22:30 22:30 - 22:45 22:30 - 22:45 22:30 - 23:15 23:00 - 23:15 23:15 - 23:30 23:15 - 23:30													
18:45 - 19:00 3 82 124 2 3 7 19:00 - 19:15 19:15 - 19:30 19:30 - 19:45 19:45 - 20:00 19:45 - 20:00 19:45 - 20:00 19:45 - 20:30 19:45													
19:00 - 19:15 19:15 - 19:30 19:30 - 19:45 19:45 - 20:00 20:00 - 20:15 20:15 - 20:30 20:30 - 20:45 20:45 - 21:00 21:00 - 21:15 21:15 - 21:30 21:45 - 22:00 22:03 - 22:45 22:15 - 22:30 22:30 - 22:45 22:45 - 23:00 23:00 - 23:15 23:15 - 23:30 23:15 - 23:30													
19:15 - 19:30 19:30 - 19:45 19:45 - 20:00 20:00 - 20:15 20:15 - 20:30 20:30 - 20:45 20:45 - 21:00 21:00 - 21:15 21:15 - 21:30 21:45 - 22:00 21:45 - 22:00 22:00 - 22:15 22:30 - 22:45 22:45 - 23:00 23:00 - 23:15 23:00 - 23:15 23:15 - 23:30 23:15 - 23:30			OZ.			121							
19:30 - 19:45 19:45 - 20:00 20:00 - 20:15 20:15 - 20:30 20:30 - 20:45 20:45 - 21:00 20:45 - 21:00 21:00 - 21:15 21:15 - 21:30 21:30 - 21:45 21:45 - 22:00 22:00 - 22:15 22:15 - 22:30 22:30 - 22:45 22:45 - 23:00 23:00 - 23:15 23:15 - 23:30 30													
19:45 - 20:00 20:00 - 20:15 20:15 - 20:30 20:30 - 20:45 20:45 - 21:00 21:00 - 21:15 21:15 - 21:30 21:30 - 21:45 21:45 - 22:00 22:00 - 22:15 22:15 - 22:30 22:30 - 22:45 22:45 - 23:00 23:00 - 23:15 23:15 - 23:30													
20:00 - 20:15 20:15 - 20:30 20:30 - 20:45 20:45 - 21:00 21:00 - 21:15 21:15 - 21:30 21:30 - 21:45 21:45 - 22:00 22:00 - 22:15 22:15 - 22:30 22:30 - 22:45 22:45 - 23:00 23:00 - 23:15 23:15 - 23:30													
20:15 - 20:30 20:30 - 20:45 20:45 - 21:00 21:00 - 21:15 21:15 - 21:30 21:30 - 21:45 21:45 - 22:00 22:00 - 22:15 22:30 - 22:45 22:45 - 23:00 23:00 - 23:15 23:15 - 23:30													
20:30 - 20:45 20:45 - 21:00 21:00 - 21:15 21:15 - 21:30 21:30 - 21:45 21:45 - 22:00 22:00 - 22:15 22:30 - 22:45 22:45 - 23:00 23:00 - 23:15 23:15 - 23:30													
20:45 - 21:00 21:00 - 21:15 21:15 - 21:30 21:30 - 21:45 21:45 - 22:00 22:00 - 22:15 22:15 - 22:30 22:30 - 22:45 22:45 - 23:00 23:00 - 23:15 23:15 - 23:30													
21:00 - 21:15 21:15 - 21:30 21:30 - 21:45 21:45 - 22:00 22:00 - 22:15 22:15 - 22:30 22:30 - 22:45 22:45 - 23:00 23:00 - 23:15 23:15 - 23:30													
21:15 - 21:30 21:30 - 21:45 21:45 - 22:00 22:00 - 22:15 22:15 - 22:30 22:30 - 22:45 22:45 - 23:00 23:00 - 23:15 23:15 - 23:30 23:15 - 23:30													
21:30 - 21:45 21:45 - 22:00 22:00 - 22:15 22:05 - 22:30 22:30 - 22:45 22:45 - 23:00 23:00 - 23:15 23:15 - 23:30													
21:45 - 22:00 22:00 - 22:15 22:15 - 22:30 22:30 - 22:45 22:45 - 23:00 23:00 - 23:15 23:15 - 23:30													
22:00 - 22:15 22:15 - 22:30 22:30 - 22:45 22:45 - 23:00 23:00 - 23:15 23:15 - 23:30													
22:15 - 22:30 22:30 - 22:45 22:45 - 23:00 23:00 - 23:15 23:15 - 23:30													
22:30 - 22:45 22:45 - 23:00 23:00 - 23:15 23:15 - 23:30													
22:45 - 23:00 23:00 - 23:15 23:15 - 23:30		1											
23:00 - 23:15 23:15 - 23:30													
23:15 - 23:30													
123:30 - 23:45	23:30 - 23:45												
23:45 - 24:00		†											

Location: Columbia Pk @ Declaration Way

A.M. Peak Hour (6:00 - 9:00)

	Co	lumbia P	ike	Со	lumbia P	ike	Dec	laration \	Nay		-	
	NB	NB	NB	SB	SB	SB	EB	EB	EB	WB	WB	WB
Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
6:45 - 7:00	152	238	0	0	83	53	5	0	20	0	0	0
7:00 - 7:15	121	187	0	0	88	176	16	0	80	0	0	0
7:15 - 7:30	194	156	0	0	99	148	47	0	75	0	0	0
7:30 - 7:45	95	288	0	0	82	20	45	0	77	0	0	0
6:45 - 7:45	562	869	0	0	352	397	113	0	252	0	0	0

Peak Hour Factor: 0.885

P.M. Peak Hour (2:00 - 7:00)

	Co	lumbia P	ike	Co	lumbia P	ike	Dec	claration \	Vay		-	
	NB	NB	NB	SB	SB	SB	EB	EB	EB	WB	WB	WB
Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
16:45 - 17:00	27	172	0	0	225	14	18	0	37	0	0	0
17:00 - 17:15	11	183	0	0	286	11	14	0	25	0	0	0
17:15 - 17:30	18	175	0	0	258	12	10	0	21	0	0	0
17:30 - 17:45	23	151	0	0	209	17	32	0	47	0	0	0
16:45 - 17:45	79	681	0	0	978	54	74	0	130	0	0	0

Peak Hour Factor: 0.942

Location: Tollgate Blvd @ Vintage Tollgate

Time Interval: AM

Time 0:00 - 0:15 0:15 - 0:30 0:30 - 0:45	NB Left	tage Tollo	NB	CD	0-							
0:00 - 0:15 0:15 - 0:30 0:30 - 0:45				SB SB SB			Tollgate Blvd EB EB EB			Tollgate Blvd WB WB WB		
0:00 - 0:15 0:15 - 0:30 0:30 - 0:45		Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
0:15 - 0:30 0:30 - 0:45			<u> </u>			,			,			
0:30 - 0:45												
0:45 - 1:00												
1:00 - 1:15												
1:15 - 1:30												
1:30 - 1:45												
1:45 - 2:00												-
2:00 - 2:15												
2:15 - 2:30												
2:30 - 2:45												
2:45 - 3:00												├──
3:00 - 3:15												
3:15 - 3:30												
3:30 - 3:45												
3:45 - 4:00												
4:00 - 4:15												
4:15 - 4:30												
4:30 - 4:45												
4:45 - 5:00												<u> </u>
5:00 - 5:15												<u> </u>
5:15 - 5:30												
5:30 - 5:45												
5:45 - 6:00												
6:00 - 6:15												
6:15 - 6:30												
6:30 - 6:45												
6:45 - 7:00												
7:00 - 7:15												
7:15 - 7:30												
7:30 - 7:45												
7:45 - 8:00												
8:00 - 8:15												
8:15 - 8:30												
8:30 - 8:45												
8:45 - 9:00												
9:00 - 9:15												
9:15 - 9:30												
9:30 - 9:45												
9:45 - 10:00												
10:00 - 10:15												
10:15 - 10:30												
10:30 - 10:45												
10:45 - 11:00												†
11:00 - 11:15												
11:15 - 11:30												
11:30 - 11:45												
11:45 - 12:00												

Location: Tollgate Blvd @ Vintage Tollgate

Time Interval: PM

	Vintage Tollgate			-			Tollgate Blvd			Tollgate Blvd		
	NB	NB	NB	SB	SB	SB	EB	EB	EB	WB	WB	WB
Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
12:00 - 12:15			J									
12:15 - 12:30												
12:30 - 12:45												
12:45 - 13:00												
13:00 - 13:15												
13:15 - 13:30												
13:30 - 13:45												
13:45 - 14:00												
14:00 - 14:15												
14:15 - 14:30												
14:30 - 14:45												
14:45 - 15:00												
15:00 - 15:15												
15:15 - 15:30												
15:30 - 15:45												
15:45 - 16:00												
16:00 - 16:15												
16:15 - 16:30												
16:30 - 16:45												
16:45 - 17:00												
17:00 - 17:15												
17:15 - 17:30												
17:30 - 17:45												
17:45 - 18:00												
18:00 - 18:15												
18:15 - 18:30												
18:30 - 18:45												
18:45 - 19:00												
19:00 - 19:15												
19:15 - 19:30												
19:30 - 19:45												
19:45 - 20:00												
20:00 - 20:15												
20:15 - 20:30												
20:30 - 20:45												
20:45 - 21:00												
21:00 - 21:15												
21:15 - 21:30												
21:30 - 21:45												
21:45 - 22:00												
22:00 - 22:15												
22:15 - 22:30												
22:30 - 22:45												
22:45 - 23:00												
23:00 - 23:15												
23:15 - 23:30												
23:30 - 23:45												
23:45 - 24:00												

Location: Tollgate Blvd @ Vintage Tollgate

A.M. Peak Hour (6:00 - 9:00)

	Vin	age Tollo	gate		-		To	ollgate Bl	vd	Tollgate Blvd			
	NB	NB	NB	SB SB SB			EB	EB	EB	WB	WB	WB	
Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
0:00 - 0:15	0	0	0	0	0	0	0	0	0	0	0	0	
0:15 - 0:30	0	0	0	0	0	0	0	0	0	0	0	0	
0:30 - 0:45	0	0	0	0	0	0	0	0	0	0	0	0	
0:45 - 1:00	0	0	0	0	0	0	0	0	0	0	0	0	
0:00 - 1:00	0	0	0	0	0	0	0	0	0	0	0	0	

Peak Hour Factor: #DIV/0!

P.M. Peak Hour (2:00 - 7:00)

	Vin	tage Tollo	gate		-		To	ollgate Bl	vd	Tollgate Blvd		
	NB	NB	NB	SB SB SB		EB	EB	EB	WB	WB	WB	
Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
12:00 - 12:15	0	0	0	0	0	0	0	0	0	0	0	0
12:15 - 12:30	0	0	0	0	0	0	0	0	0	0	0	0
12:30 - 12:45	0	0	0	0	0	0	0	0	0	0	0	0
12:45 - 13:00	0	0	0	0	0	0	0	0	0	0	0	0
12:00 - 13:00	0	0	0	0	0	0	0	0	0	0	0	0

Peak Hour Factor: #DIV/0!

Location: Branford Place @ Vintage Tollgate

Time Interval: AM

	Ī	_		Bra	anford Pla	ace	Vin	tage Tollo	nate	Po	rtsmouth	Dr
	NB	NB	NB	SB	SB	SB	EB	EB	EB			WB
Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
0:00 - 0:15	LCIL	IIIIu	rtigrit	LOIL	IIIIu	rtigrit	LOIL	IIIIu	rtigiit	LOIL	TITIC	Tagni
0:15 - 0:30												
0:30 - 0:45												├──
0:45 - 1:00												├──
1:00 - 1:15												
1:15 - 1:30												
1:30 - 1:45												
1:45 - 2:00												<u> </u>
2:00 - 2:15												
2:15 - 2:30												
2:30 - 2:45												
2:45 - 3:00												
3:00 - 3:15												
3:15 - 3:30												└
3:30 - 3:45												
3:45 - 4:00												<u> </u>
4:00 - 4:15												
4:15 - 4:30												
4:30 - 4:45												
4:45 - 5:00												
5:00 - 5:15												
5:15 - 5:30												
5:30 - 5:45												
5:45 - 6:00												
6:00 - 6:15												
6:15 - 6:30												
6:30 - 6:45												
6:45 - 7:00												
7:00 - 7:15												
7:15 - 7:30												
7:30 - 7:45												
7:45 - 8:00												
8:00 - 8:15												
8:15 - 8:30												
8:30 - 8:45												
8:45 - 9:00												
9:00 - 9:15												
9:15 - 9:30												
9:30 - 9:45	1										1	
9:45 - 10:00	1										1	
10:00 - 10:15												
10:15 - 10:30												\vdash
10:30 - 10:45												\vdash
												
10:45 - 11:00	ļ										ļ	
11:00 - 11:15												<u> </u>
11:15 - 11:30												
11:30 - 11:45												└
11:45 - 12:00												<u> </u>

Location: Branford Place @ Vintage Tollgate

Time Interval: PM

		-		Bra	anford Pla	ace	Vin	tage Tollo	gate	Po	rtsmouth	Dr
	NB	NB	NB	SB	SB	SB	EB	EB	EB	WB	WB	WB
Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
12:00 - 12:15												
12:15 - 12:30												
12:30 - 12:45												
12:45 - 13:00												
13:00 - 13:15												
13:15 - 13:30												
13:30 - 13:45												
13:45 - 14:00												
14:00 - 14:15												
14:15 - 14:30												
14:30 - 14:45												
14:45 - 15:00												
15:00 - 15:15												
15:15 - 15:30									 		 	
15:30 - 15:45		 						 	 		 	
15:45 - 16:00		1						1	 		 	
16:00 - 16:15									-		 	
16:15 - 16:30												
16:30 - 16:45												
16:45 - 17:00												
17:00 - 17:15												
17:15 - 17:30												
17:30 - 17:45												
17:45 - 18:00												
18:00 - 18:15												
18:15 - 18:30												
18:30 - 18:45												
18:45 - 19:00												
19:00 - 19:15												
19:15 - 19:30												
19:30 - 19:45												
19:45 - 20:00												
20:00 - 20:15												
20:15 - 20:30												
20:30 - 20:45									ļ		ļ	
20:45 - 21:00												ļ
21:00 - 21:15												
21:15 - 21:30												
21:30 - 21:45												
21:45 - 22:00												
22:00 - 22:15												
22:15 - 22:30												
22:30 - 22:45												
22:45 - 23:00												
23:00 - 23:15												
23:15 - 23:30												
23:30 - 23:45												
23:45 - 24:00												

Location: Branford Place @ Vintage Tollgate

A.M. Peak Hour (6:00 - 9:00)

		-		Branford Place			Vin	tage Tollo	gate	Portsmouth Dr		
	NB	NB	NB	SB	SB	SB	EB	EB	EB	WB	WB	WB
Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
0:00 - 0:15	0	0	0	0	0	0	0	0	0	0	0	0
0:15 - 0:30	0	0	0	0	0	0	0	0	0	0	0	0
0:30 - 0:45	0	0	0	0	0	0	0	0	0	0	0	0
0:45 - 1:00	0	0	0	0	0	0	0	0	0	0	0	0
0:00 - 1:00	0	0	0	0	0	0	0	0	0	0	0	0

Peak Hour Factor: #DIV/0!

P.M. Peak Hour (2:00 - 7:00)

		-		Branford Place			Vintage Tollgate			Portsmouth Dr		
	NB	NB	NB	SB	SB SB SB		EB	EB	EB	WB	WB	WB
Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
12:00 - 12:15	0	0	0	0	0	0	0	0	0	0	0	0
12:15 - 12:30	0	0	0	0	0	0	0	0	0	0	0	0
12:30 - 12:45	0	0	0	0	0	0	0	0	0	0	0	0
12:45 - 13:00	0	0	0	0	0	0	0	0	0	0	0	0
12:00 - 13:00	0	0	0	0	0	0	0	0	0	0	0	0

Peak Hour Factor: #DIV/0!

APPENDIX B TRIP GENERATION WORKSHEETS

		N SUMMARY: 2022 HORIZOI The Edition, Institute of Transport		ineers						
			Trip Generation							
LUC	Land Use	# of Units	Daily	A.M	. Peak I	lour	P.M. Peak Ho		lour	
			Daily	Enter	Exit	Total	Enter	Exit	Total	
220	Multifamily Housing (Low-Rise)	231 Dwelling Units	1,706	35	90	125	91	63	154	
565	Day Care Center	0 Students	0	0	0	0	0	0	0	
640	Animal Hospital/Veterinary Clinic	0 GSF	0	0	0	0	0	0	0	
710	General Office Building	25,242 GSF	279	43	6	49	17	76	93	
720	Medical-Dental Office Building	15,600 GSF	512	34	9	43	15	40	55	
820	Shopping Center	22,822 GSF	2,201	101	62	163	87	95	182	
880	Pharmacy/Drugstore without Drive-Through Window	0 GSF	0	0	0	0	0	0	0	
911	Walk-in Bank	0 GSF	n/a	0	0	0	0	0	0	
918	Hair Salon	0 GSF	n/a	0	0	0	0	0	0	
920	Copy, Print, and Express Ship Store	0 GSF	n/a	0	0	0	0	0	0	
931	Quality Restaurant	7,171 GSF	601	26	6	32	36	23	59	
932	High-Turnover (Sit-Down) Restaurant	0 GSF	0	0	0	0	0	0	0	
933	Fast Food Restaurant without Drive-Through Window	0 GSF	0	0	0	0	0	0	0	
		TOTAL:	5,299	239	173	412	246	297	543	

Multifamily Housing (Low-Rise): 231 Dwelling Units

Use ITE Land Use Code 220 (Multifamily Housing, Low-Rise) and associated trip generation rates for 24-hour total trips and peak hour of the generator trips.

Average Daily Traffic

T = 7.56(X) - 40.86 T = 7.56(231) - 40.86T = 1706

A.M. Peak Hour of of Generator

Ln(T) = 0.94 Ln(X) - 0.29 Ln(T) = 0.94 Ln(231) - 0.29) T = 125 Enter = 0.28(125) = 35 Exit = 0.72(125) = 90

P.M. Peak Hour of Generator

T = 0.66(X) + 1.41 T = 0.66(231) + 1.41 T = 154Enter = 0.59(154) = 91 Exit = 0.41(154) = 63

General Office Building - 25,242 Sq. Feet Gross Floor Area (X = GSF/1000)

Use ITE Land Use Code 710 (General Office Building) and associated trip generation rates for 24-hour total trips and peak hour of the generator trips.

Average Daily Traffic

A.M. Peak Hour of the Generator

Enter =
$$0.88(49) = 43$$

Exit = $0.12(49) = 6$

P.M. Peak Hour of the Generator

Enter =
$$0.18(93) = 17$$

Exit = $0.82(93) = 76$

Medical Office Building - 15,600 Sq. Feet Gross Floor Area (X = GSF/1000)

Use ITE Land Use Code 720 (Medical Office Building) and associated trip generation rates for 24-hour total trips and peak hour of the adjacent street trips.

Average Daily Traffic

T = 38.42(X) - 87.62 T = 38.42(15.6) - 87.62 T = 512

A.M. Peak Hour of Adjacent Street Traffic

Enter =
$$0.78(43) = 34$$

Exit = $0.22(43) = 9$

P.M. Peak Hour of Adjacent Street Traffic

Enter =
$$0.28(55) = 15$$

Exit = $0.72(55) = 40$

Shopping Center - 22,822 Sq. Feet Gross Floor Area (X = GSF/1000)

Use ITE Land Use Code 820 (Shopping Center) and associated trip generation rates for 24-hour total trips and peak hour of the adjacent street trips.

Average Daily Traffic

A.M. Peak Hour of Adjacent Street Traffic

$$T = 0.50 (X) + 151.78$$

 $T = 0.50(0) + 151.78$
 $T = 163$

Enter =
$$0.62(163)$$
 = 101
Exit = $0.38(163)$ = 62

P.M. Peak Hour of Adjacent Street Traffic

Enter =
$$0.48(182) = 87$$

Exit = $0.52(182) = 95$

Quality Restaurant - 7,171 Sq. Feet Gross Floor Area (X = GSF/1000)

Use ITE Land Use Code 931 (Quality Restaurant) and associated trip generation rates for 24-hour total trips and peak hour trips.

Average Daily Traffic

T = 83.84(X) T = 83.84(7.171)T = 601

A.M. Peak Hour of Generator

T = 4.47(X) T = 4.47(7.171)T = 32

Enter =
$$0.80(32) = 26$$

Exit = $0.20(32) = 6$

P.M. Peak Hour of Generator

T = 8.28(X) T = 8.28(7.171) T = 59

> Enter = 0.61(59) = 36Exit = 0.39(59) = 23

	NCHRP 684 Internal Trip Capture Estimation Tool									
Project Name:	Tollgate Village		Organization:	Ragan-Smith Associates						
Project Location:	Thompson's Station, TN		Performed By:	bsb						
Scenario Description:	Town Center		Date:	10/4/2018						
Analysis Year:	2022		Checked By:							
Analysis Period:	AM Street Peak Hour		Date:							

	i abie	1-A: Base venic	ie- i rip Generatioi	1 ES	timates (Single-Use Si	te Estimate)	
Land Use	Developm	ent Data (For Int	formation Only)			Estimated Vehicle-Trips ³	
Land USE	ITE LUCs1	Quantity	Units		Total	Entering	Exiting
Office	710 & 720	40,842	GSF		92	77	15
Retail	820	22,822	GSF		163	101	62
Restaurant	931	7,171	GSF		32	26	6
Cinema/Entertainment					0		
Residential	220	231	Units		125	35	90
Hotel					0		
All Other Land Uses ²					0		
					412	239	173

		Table 2-A:	Mode Split and Veh	icle	Occupancy Estimates		
Land Use		Entering Trip	os			Exiting Trips	
Land Ose	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ.⁴	% Transit	% Non-Motorized
Office	1.00	0%	0%	Ī	1.00	0%	0%
Retail	1.00	0%	0%	Ī	1.00	0%	0%
Restaurant	1.00	0%	0%	Ī	1.00	0%	0%
Cinema/Entertainment				Ī			
Residential	1.00	0%	0%	Ī	1.00	0%	0%
Hotel	1.00	0%	0%	Ī	1.00	0%	0%
All Other Land Uses ²				Ī			

	Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)											
Origin (From)		Destination (To)										
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel						
Office												
Retail												
Restaurant												
Cinema/Entertainment												
Residential												
Hotel												

		Table 4-A: I	nternal Person-Tri _l	p Origin-Destination Matrix*									
Ovinin (Franc)		Destination (To)											
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel							
Office		4	6	0	0	0							
Retail	3		8	0	1	0							
Restaurant	2	1		0	0	0							
Cinema/Entertainment	0	0	0		0	0							
Residential	2	1	5	0		0							
Hotel	0	0	0	0	0								

Table 5-A: Computations Summary										
Total Entering Exiting										
All Person-Trips	412	239	173							
Internal Capture Percentage	16%	14%	19%							
External Vehicle-Trips ⁵	346	206	140							
External Transit-Trips ⁶	0	0	0							
External Non-Motorized Trips ⁶	0	0	0							

Table 6-A: Interna	Table 6-A: Internal Trip Capture Percentages by Land Use									
Land Use	Entering Trips	Exiting Trips								
Office	9%	67%								
Retail	6%	19%								
Restaurant	73%	50%								
Cinema/Entertainment	N/A	N/A								
Residential	3%	9%								
Hotel	N/A	N/A								

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.

⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A.

⁶Person-Trips

^{*}Indicates computation that has been rounded to the nearest whole number.

Project Name:	Tollgate Village
Analysis Period:	AM Street Peak Hour

Table 7-A: Conversion of Vehicle-Trip Ends to Person-Trip Ends											
Land Use	Tab	Table 7-A (D): Entering Trips				Table 7-A (O): Exiting Trips	;				
Land Use	Veh. Occ.	Vehicle-Trips	Person-Trips*		Veh. Occ.	Vehicle-Trips	Person-Trips*				
Office	1.00	77	77		1.00	15	15				
Retail	1.00	101	101		1.00	62	62				
Restaurant	1.00	26	26		1.00	6	6				
Cinema/Entertainment	1.00	0	0		1.00	0	0				
Residential	1.00	35	35		1.00	90	90				
Hotel	1.00	0	0		1.00	0	0				

	Table 8-A (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)											
Origin (Fram)		Destination (To)										
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel						
Office		4	9	0	0	0						
Retail	18		8	0	9	0						
Restaurant	2	1		0	0	0						
Cinema/Entertainment	0	0	0		0	0						
Residential	2	1	18	0		0						
Hotel	0	0	0	0	0							

	Table 8-A (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)											
Origin (Fram)		Destination (To)										
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel						
Office		32	6	0	0	0						
Retail	3		13	0	1	0						
Restaurant	11	8		0	2	0						
Cinema/Entertainment	0	0	0		0	0						
Residential	2	17	5	0		0						
Hotel	2	4	2	0	0							

	Та	ble 9-A (D): Int	ernal and Externa	l Tri	ips Summary (Enterin	g Trips)	
Destination Land Use		Person-Trip Esti	mates			External Trips by Mode*	
Destination Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²
Office	7	70	77		70	0	0
Retail	6	95	101		95	0	0
Restaurant	19	7	26		7	0	0
Cinema/Entertainment	0	0	0		0	0	0
Residential	1	34	35		34	0	0
Hotel	0	0	0		0	0	0
All Other Land Uses ³	0	0	0		0	0	0

	Table 9-A (O): Internal and External Trips Summary (Exiting Trips)											
Origin Land Use		Person-Trip Esti	mates		External Trips by Mode*							
Origin Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²					
Office	10	5	15		5	0	0					
Retail	12	50	62		50	0	0					
Restaurant	3	3	6		3	0	0					
Cinema/Entertainment	0	0	0		0	0	0					
Residential	8	82	90		82	0	0					
Hotel	0	0	0		0	0	0					
All Other Land Uses ³	0	0	0		0	0	0					

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator

*Indicates computation that has been rounded to the nearest whole number.

	NCHRP 684 Internal Trip Capture Estimation Tool										
Project Name:	Project Name: Tollgate Village Organization: Ragan-Smith Associates										
Project Location:	Thompson's Station, TN		Performed By:	bsb							
Scenario Description:	Town Center		Date:	10/4/2018							
Analysis Year:	2022		Checked By:								
Analysis Period:	PM Street Peak Hour		Date:								

	Table 1	-P: Base Vehicl	e-Trip Generation	ı Es	timates (Single-Use S	ite Estimate)	
Land Use	Developm	ent Data (<i>For Inf</i>	formation Only)			Estimated Vehicle-Trips ³	
Land OSE	ITE LUCs1	Quantity	Units		Total	Entering	Exiting
Office	710 & 720	40,842	GSF		148	32	116
Retail	820	22,822	GSF		182	87	95
Restaurant	931	7,171	GSF		59	36	23
Cinema/Entertainment					0		
Residential	220	231	Units		154	91	63
Hotel					0		
All Other Land Uses ²					0		
					543	246	297

Table 2-P: Mode Split and Vehicle Occupancy Estimates											
		Entering Tri	ps			Exiting Trips					
Land Use	Veh. Occ.⁴	% Transit	% Non-Motorized		Veh. Occ.⁴	% Transit	% Non-Motorized				
Office	1.00	0%	0%		1.00	0%	0%				
Retail	1.00	0%	0%		1.00	0%	0%				
Restaurant	1.00	0%	0%		1.00	0%	0%				
Cinema/Entertainment											
Residential	1.00	0%	0%		1.00	0%	0%				
Hotel	1.00	0%	0%		1.00	0%	0%				
All Other Land Uses ²											

	Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)										
Origin (From)		Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		1000	1000		1000						
Retail					1000						
Restaurant					1000						
Cinema/Entertainment					1000						
Residential		1000	1000								
Hotel					1000						

	Table 4-P: Internal Person-Trip Origin-Destination Matrix*										
Origin (From)		Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		5	1	0	2	0					
Retail	2		10	0	23	0					
Restaurant	1	9		0	4	0					
Cinema/Entertainment	0	0	0		0	0					
Residential	3	7	4	0		0					
Hotel	0	0	0	0	0						

Table 5-F	Table 5-P: Computations Summary								
Total Entering Exiting									
All Person-Trips	543	246	297						
Internal Capture Percentage	26%	29%	24%						
External Vehicle-Trips ⁵	401	175	226						
External Transit-Trips ⁶	0	0	0						
External Non-Motorized Trips ⁶	0	0	0						

Table 6-P: Interna	al Trip Capture Percentaç	ges by Land Use
Land Use	Entering Trips	Exiting Trips
Office	19%	7%
Retail	24%	37%
Restaurant	42%	61%
Cinema/Entertainment	N/A	N/A
Residential	32%	22%
Hotel	N/A	N/A

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be ⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

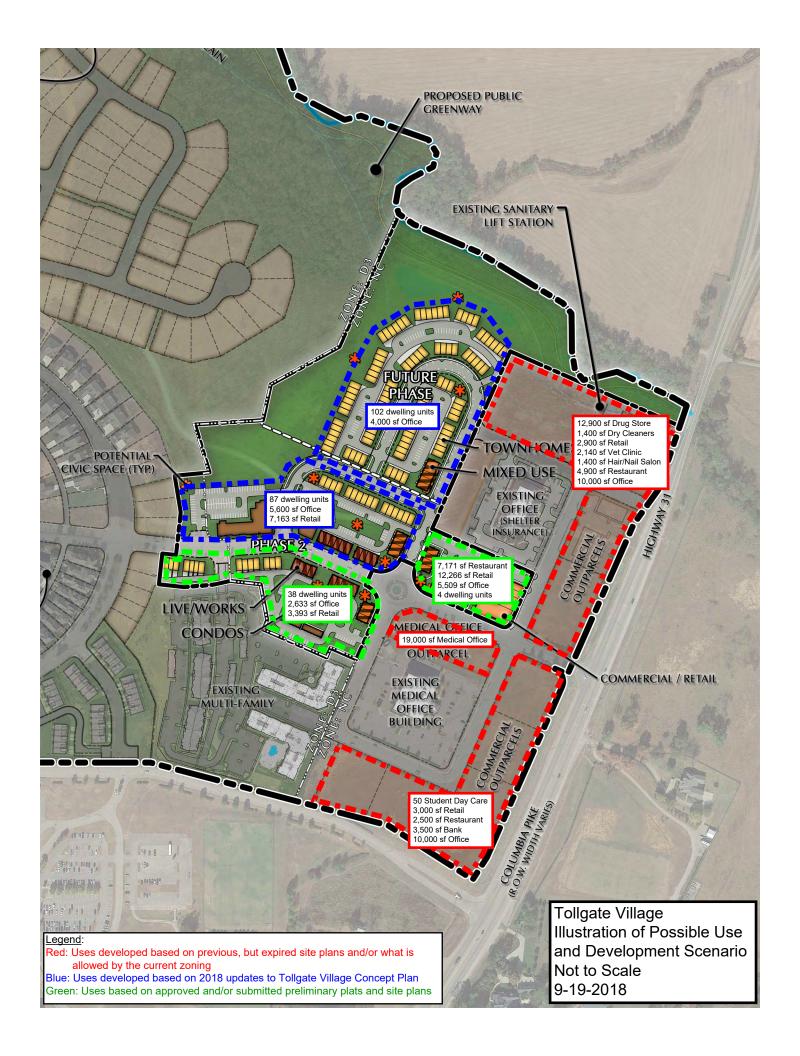
Project Name:	Tollgate Village
Analysis Period:	PM Street Peak Hour

	T	able 7-P: Conver	sion of Vehicle-Tr	ip E	nds to Person-Trip En	ds	
Landllas	Table	e 7-P (D): Entering	Trips			Table 7-P (O): Exiting Trips	
Land Use	Veh. Occ. Vehicle-Trips Person-Trips*		Veh. Occ.	Vehicle-Trips	Person-Trips*		
Office	1.00	32	32		1.00	116	116
Retail	1.00	87	87		1.00	95	95
Restaurant	1.00	36	36		1.00	23	23
Cinema/Entertainment	1.00	0	0		1.00	0	0
Residential	1.00	91	91		1.00	63	63
Hotel	1.00	0	0		1.00	0	0

	Table 9 D	O\. Internal Der	on Trin Origin D	atination Matrix (Computed	at Origin)			
Table 8-P (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin) Destination (To)								
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel		
Office		18	4	0	2	0		
Retail	2		28	4	23	5		
Restaurant	1	9		2	4	2		
Cinema/Entertainment	0	0	0		0	0		
Residential	3	20	10	0		2		
Hotel	0	0	0	0	0			

Table 8-P (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)								
Origin (From)				Destination (To)				
Oligili (Floili)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel		
Office		5	1	0	4	0		
Retail	10		10	0	42	0		
Restaurant	10	44		0	15	0		
Cinema/Entertainment	2	3	1		4	0		
Residential	18	7	4	0		0		
Hotel	0	2	2	0	0			

	Tal	ole 9-P (D): Inter	nal and External T	rips	Summary (Entering T	rips)		
Destination Land Use	Р	erson-Trip Estima	ates		External Trips by Mode*			
Destination Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²	
Office	6	26	32		26	0	0	
Retail	21	66	87	1 1	66	0	0	
Restaurant	15	21	36	1 1	21	0	0	
Cinema/Entertainment	0	0	0	1 1	0	0	0	
Residential	29	62	91	1 1	62	0	0	
Hotel	0	0	0	1 1	0	0	0	
All Other Land Uses ³	0	0	0		0	0	0	


	Та	ble 9-P (O): Inte	rnal and External	Γrip	s Summary (Exiting Tri	ps)	
Origin Land Has	Pe	erson-Trip Estima	ites			External Trips by Mode*	
Origin Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²
Office	8	108	116		108	0	0
Retail	35	60	95		60	0	0
Restaurant	14	9	23		9	0	0
Cinema/Entertainment	0	0	0		0	0	0
Residential	14	49	63		49	0	0
Hotel	0	0	0		0	0	0
All Other Land Uses ³	0	0	0		0	0	0

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P

²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator

*Indicates computation that has been rounded to the nearest whole number.

		IARY: FUTURE DEVELOPMI							
	Trip Generation Manual, 10 ^{tt}	Edition, Institute of Transport	tation Eng	jineers					
					Trip	Genera	tion		
LUC	Land Use	# of Units	Daily	A.M	. Peak I	lour	P.M	. Peak I	lour
			Daily	Enter	Exit	Total	Enter	Exit	Total
220	Multifamily Housing (Low-Rise)	231 Dwelling Units	1,706	35	90	125	91	63	154
565	Day Care Center	50 Students	225	23	20	43	20	22	42
640	Animal Hospital/Veterinary Clinic	2,140 GSF	46	4	4	8	4	4	8
710	General Office Building	45,242 GSF	492	73	10	83	21	94	115
720	Medical-Dental Office Building	34,600 GSF	1,242	68	19	87	33	86	119
820	Shopping Center	28,722 GSF	2,574	103	63	166	104	112	216
880	Pharmacy/Drugstore without Drive-Through Window	12,900 GSF	1,143	36	20	56	54	56	110
911	Walk-in Bank	3,500 GSF	n/a	41	38	79	47	45	92
918	Hair Salon	1,400 GSF	n/a	1	1	2	1	2	3
920	Copy, Print, and Express Ship Store	1,400 GSF	n/a	3	1	4	4	6	10
931	Quality Restaurant	7,171 GSF	601	26	6	32	36	23	59
932	High-Turnover (Sit-Down) Restaurant	4,900 GSF	550	27	22	49	30	18	48
933	Fast Food Restaurant without Drive-Through Window	2,500 GSF	866	39	26	65	36	35	71
		TOTAL:	9,445	479	320	799	481	566	1,047

Multifamily Housing (Low-Rise): 231 Dwelling Units

Use ITE Land Use Code 220 (Multifamily Housing, Low-Rise) and associated trip generation rates for 24-hour total trips and peak hour of the generator trips.

Average Daily Traffic

T = 7.56(X) - 40.86 T = 7.56(231) - 40.86T = 1706

A.M. Peak Hour of of Generator

$$Ln(T) = 0.94 \ Ln(X) - 0.29$$

$$Ln(T) = 0.94 \ Ln(231) - 0.29)$$

$$T = 125$$

$$Enter = 0.28(125) = 35$$

$$Exit = 0.72(125) = 90$$

P.M. Peak Hour of Generator

$$T = 0.66(X) + 1.41$$

$$T = 0.66(231) + 1.41$$

$$T = 154$$
Enter = 0.59(154) = 91

Exit = 0.41(154) = 63

Day Care Center: 50 Students

Use ITE Land Use Code 565 (Day Care Center) and associated trip generation rates for 24-hour total trips and peak hour of the generator trips.

Average Daily Traffic

$$T = 3.56(X) + 47.23$$

 $T = 3.56(50) + 47.23$
 $T = 225$

A.M. Peak Hour of of Generator

$$\begin{aligned} &Ln(T) = 0.77 \ Ln(X) + 0.74 \\ &Ln(T) = 0.77 \ Ln(50) + 0.74) \\ &T = 43 \end{aligned}$$

Enter =
$$0.53(43) = 23$$

Exit = $0.47(43) = 20$

P.M. Peak Hour of Generator

$$\begin{split} Ln(T) &= 0.78 \ Ln(X) + 0.68 \\ Ln(T) &= 0.78 \ Ln() + 0.68) \\ T &= 42 \end{split}$$

Enter =
$$0.47(42) = 20$$

Exit = $0.53(42) = 22$

Day Care Center: 2,140 Sq. Feet Gross Floor Area (X = GSF/1000)

Use ITE Land Use Code 640 (Animal Hospital/Veterinary Clinic) and associated trip generation rates for 24-hour total trips and peak hour of the generator trips.

Average Daily Traffic

T = 21.5(X)

T = 21.5(2.14)

T = 46

A.M. Peak Hour of of Generator

T = 3.73(X)

T = 3.73(2.14)

T = 8

Enter = 0.53(8) = 4

Exit = 0.47(8) = 4

P.M. Peak Hour of Generator

T = 3.83(X)

T = 3.83(2.14)

T = 8

Enter = 0.52(8) = 4

Exit = 0.48(8) = 4

General Office Building - 45,242 Sq. Feet Gross Floor Area (X = GSF/1000)

Use ITE Land Use Code 710 (General Office Building) and associated trip generation rates for 24-hour total trips and peak hour of the generator trips.

Average Daily Traffic

$$Ln(T) = 0.97 Ln(X) + 2.50$$

 $Ln(T) = 0.97 Ln(45.242) + 2.50$
 $T = 492$

A.M. Peak Hour of the Generator

$$Ln(T) = 0.88 Ln(X) + 1.06$$

 $Ln(T) = 0.88 Ln(45.242) + 1.06$
 $T = 83$

Enter =
$$0.88(83) = 73$$

Exit = $0.12(83) = 10$

P.M. Peak Hour of the Generator

$$T = 1.10 (X) + 65.39$$

 $T = 1.10 (45.242) + 65.39$
 $T = 115$

Enter =
$$0.18(115) = 21$$

Exit = $0.82(115) = 94$

Medical Office Building - 34,600 Sq. Feet Gross Floor Area (X = GSF/1000)

Use ITE Land Use Code 720 (Medical Office Building) and associated trip generation rates for 24-hour total trips and peak hour of the adjacent street trips.

Average Daily Traffic

T = 38.42(X) - 87.62 T = 38.42(34.6) - 87.62T = 1242

A.M. Peak Hour of Adjacent Street Traffic

$$Ln(T) = 0.89 Ln(X) + 1.31$$

 $Ln(T) = 0.89 Ln(34.6) + 1.31$
 $T = 87$

Enter =
$$0.78(87) = 68$$

Exit = $0.22(87) = 19$

P.M. Peak Hour of Adjacent Street Traffic

$$T = 3.39(X) + 2.02$$

 $T = 3.39(34.6) + 2.02$
 $T = 119$

Enter =
$$0.28(119) = 33$$

Exit = $0.72(119) = 86$

Shopping Center - 28,722 Sq. Feet Gross Floor Area (X = GSF/1000)

Use ITE Land Use Code 820 (Shopping Center) and associated trip generation rates for 24-hour total trips and peak hour of the adjacent street trips.

Average Daily Traffic

$$Ln(T) = 0.68 Ln(X) + 5.57$$

 $Ln(T) = 0.68 Ln(28.722) + 5.57$
 $T = 2574$

A.M. Peak Hour of Adjacent Street Traffic

$$T = 0.50 (X) + 151.78$$

 $T = 0.50(0) + 151.78$
 $T = 166$

Enter =
$$0.62(166) = 103$$

Exit = $0.38(166) = 63$

P.M. Peak Hour of Adjacent Street Traffic

$$Ln(T) = 0.74 Ln(X) + 2.89$$

 $Ln(T) = 0.74 Ln(28.722) + 2.89$
 $T = 216$

Enter =
$$0.48(216) = 104$$

Exit = $0.52(216) = 112$

Phamacy/Drugstore without Drive-Through Window -

12,900 Sq. Feet Gross Floor Area (X = GSF/1000)

Use ITE Land Use Code 880 (Pharmacy/Drugstore without Drive-Through Window) and associated trip generation rates for 24-hour total trips and peak hour of the adjacent street trips.

Average Daily Traffic

Ln(T) = 0.99 Ln(X) + 4.51 Ln(T) = 0.99 Ln(0) + 4.51T = 1143

A.M. Peak Hour of Adjacent Street Traffic

T = 10.22(X) - 75.70 T = 10.22(12.9) - 75.70T = 56

> Enter = 0.65(56) = 36Exit = 0.35(56) = 20

P.M. Peak Hour of Adjacent Street Traffic

T = 8.51(X) T = 8.51(12.9)T = 110

> Enter = 0.49(110) = 54Exit = 0.51(110) = 56

Drive-in Bank - 3,500 Sq. Feet Gross Floor Area (X = GSF/1000)

Use ITE Land Use Code 911 (Walk-in Bank) and associated trip generation rates for 24-hour total trips and peak hour of the generator trips.

Average Daily Traffic

No Average Rate or Equation is Provided

A.M. Peak Hour of Adjacent Street Traffic

T = 22.54(X)

T = 22.54(3.5)

T = 79

Enter = 0.52(79) = 41

Exit = 0.48(79) = 38

P.M. Peak Hour of Adjacent Street Traffic

T = 26.40(X)

T = 26.40(3.5)

T = 92

Enter = 0.51(92) = 47

Exit = 0.49(92) = 45

Hair Salon: 1,400 Sq. Feet Gross Floor Area (X = GSF/1000)

Use ITE Land Use Code 918 (Hair Salon) and associated trip generation rates for 24-hour total trips and peak hour of the generator trips.

Average Daily Traffic

No Average Rate or Equation is Provided

A.M. Peak Hour of Adjacent Street Traffic

T = 1.21(X) T = 1.21(1.4)T = 2

> Enter = 0.50(2) = 1Exit = 0.50(2) = 1

* Directional Distribution no available, 50% entering/50% exiting used for this study

P.M. Peak Hour of Adjacent Street Traffic

T = 1.94(X) T = 1.94(1.4)T = 3

> Enter = 0.38(3) = 1Exit = 0.62(3) = 2

Copy, Print, and Express Ship Store: 1,400 Sq. Feet Gross Floor Area (X = GSF/1000)

Use ITE Land Use Code 920 (Copy, Print, and Express Ship Store) and associated trip generation rates for 24-hour total trips and peak hour of the

Average Daily Traffic

No Average Rate or Equation is Provided

A.M. Peak Hour of Adjacent Street Traffic

T = 2.78(X) T = 2.78(1.4)T = 4

Enter =
$$0.75(4) = 3$$

Exit = $0.25(4) = 1$

P.M. Peak Hour of Adjacent Street Traffic

T = 7.42(X) T = 7.42(1.4)T = 10

Enter =
$$0.44(10) = 4$$

Exit = $0.56(10) = 6$

Quality Restaurant - 7,171 Sq. Feet Gross Floor Area (X = GSF/1000)

Use ITE Land Use Code 931 (Quality Restaurant) and associated trip generation rates for 24-hour total trips and peak hour trips.

Average Daily Traffic

T = 83.84(X) T = 83.84(7.171)T = 601

A.M. Peak Hour of Generator

T = 4.47(X) T = 4.47(7.171) T = 32Enter =

Enter =
$$0.80(32) = 26$$

Exit = $0.20(32) = 6$

P.M. Peak Hour of Generator

T = 8.28(X) T = 8.28(7.171)T = 59

Enter =
$$0.61(59) = 36$$

Exit = $0.39(59) = 23$

High-Turnover (Sit-Down) Restaurant - 4,900 Sq. Feet Gross Floor Area (X = GSF/1000)

Use ITE Land Use Code 932 (High-Turnover (Sit-Down) Restaurant) and associated trip generation rates for 24-hour total trips and peak hour trips.

Average Daily Traffic

T = 112.18(X)

T = 112.18(4.9)T = 550

A.M. Peak Hour of Adjacent Street Traffic

T = 9.94(X)

T = 9.94(4.9)

T = 49

Enter = 0.55(49) = 27

Exit = 0.45(49) = 22

P.M. Peak Hour of Adjacent Street Traffic

T = 9.77(X)

T = 9.77(4.9)

T = 48

Enter = 0.62(48) = 30

Exit = 0.38(48) = 18

Fast Food Restaurant without Drive-Through Window - 2,500 Sq. Feet Gross Floor Area (X = GSF/1000)

Use ITE Land Use Code 933 (Fast Food Restaurant without Drive-Through Window) and associated trip generation rates for 24-hour total trips and peak hour trips.

Average Daily Traffic

T = 346.23(X)T = 346.23(2.5)

T = 866

A.M. Peak Hour of Adjacent Street Traffic

T = 89.03(X) - 157.40 T = 89.03(2.5) - 157.40T = 65

> Enter = 0.60(65) = 39Exit = 0.40(65) = 26

P.M. Peak Hour of Adjacent Street Traffic

T = 28.34(X) T = 28.34(2.5)T = 71

> Enter = 0.50(71) = 36Exit = 0.50(71) = 35

	NCHRP 684 Internal Trip Capture Estimation Tool					
Project Name:	Tollgate Village		Organization:	Ragan-Smith Associates		
Project Location:	Thompson's Station, TN		Performed By:	bsb		
Scenario Description:	Town Center		Date:	10/4/2018		
Analysis Year:	2027		Checked By:			
Analysis Period:	AM Street Peak Hour		Date:			

	I able	1-A: Base venic	ie- i rip Generatioi	1 ES	timates (Single-Use S	ite Estimate)	
Land Use	Developm	ent Data (For Inf	ormation Only)			Estimated Vehicle-Trips ³	
Land USE	ITE LUCs1	Quantity	Units		Total	Entering	Exiting
Office	710 & 720	79,842	GSF		170	141	29
Retail	Various	50,062	GSF		315	188	127
Restaurant	Various	14,571	GSF		146	92	54
Cinema/Entertainment					0		
Residential	220	231	Units		125	35	90
Hotel					0		
All Other Land Uses ²					0		
					756	456	300

	Table 2-A: Mode Split and Vehicle Occupancy Estimates										
		Entering Trip	os			Exiting Trips					
Land Use	Veh. Occ.4	% Transit	% Non-Motorized	ı	Veh. Occ.⁴	% Transit	% Non-Motorized				
Office	1.00	0%	0%	ı	1.00	0%	0%				
Retail	1.00	0%	0%	ı	1.00	0%	0%				
Restaurant	1.00	0%	0%	ı	1.00	0%	0%				
Cinema/Entertainment				ı							
Residential	1.00	0%	0%	ı	1.00	0%	0%				
Hotel	1.00	0%	0%	ı	1.00	0%	0%				
All Other Land Uses ²				. [

	Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)								
Origin (From)				Destination (To)					
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office									
Retail									
Restaurant									
Cinema/Entertainment									
Residential									
Hotel									

Table 4-A: Internal Person-Trip Origin-Destination Matrix*										
Origin (From)				Destination (To)						
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office		8	18	0	0	0				
Retail	6		17	0	1	0				
Restaurant	17	8		0	2	0				
Cinema/Entertainment	0	0	0		0	0				
Residential	2	1	18	0		0				
Hotel	0	0	0	0	0					

Table 5-A: Computations Summary										
Total Entering Exiting										
All Person-Trips	756	456	300							
Internal Capture Percentage	26%	21%	33%							
	· · · · · · · · · · · · · · · · · · ·									
External Vehicle-Trips ⁵	560	358	202							
External Transit-Trips ⁶	0	0	0							
External Non-Motorized Trips ⁶	0	0	0							

Table 6-A: Internal Trip Capture Percentages by Land Use								
Land Use	Entering Trips	Exiting Trips						
Office	18%	90%						
Retail	9%	19%						
Restaurant	58%	50%						
Cinema/Entertainment	N/A	N/A						
Residential	9%	23%						
Hotel	N/A	N/A						

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.

⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A.

Project Name:	Tollgate Village
Analysis Period:	AM Street Peak Hour

Table 7-A: Conversion of Vehicle-Trip Ends to Person-Trip Ends										
Londillon	Tab	le 7-A (D): Enter	ing Trips			Table 7-A (O): Exiting Trips	;			
Land Use	Veh. Occ.	Vehicle-Trips Person-Trips* Veh.		Veh. Occ.	Vehicle-Trips	Person-Trips*				
Office	1.00	141	141		1.00	29	29			
Retail	1.00	188	188		1.00	127	127			
Restaurant	1.00	92	92		1.00	54	54			
Cinema/Entertainment	1.00	0	0		1.00	0	0			
Residential	1.00	35	35		1.00	90	90			
Hotel	1.00	0	0		1.00	0	0			

Table 8-A (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)										
Origin (From)				Destination (To)						
Origin (From)	Office	Office Retail Restaurant Cinema/Entertainment Residential								
Office		8	18	0	0	0				
Retail	37		17	0	18	0				
Restaurant	17	8		0	2	2				
Cinema/Entertainment	0	0	0		0	0				
Residential	2	1	18	0		0				
Hotel	0	0	0	0	0					

Table 8-A (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)										
Origin (From)				Destination (To)						
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office		60	21	0	0	0				
Retail	6		46	0	1	0				
Restaurant	20	15		0	2	0				
Cinema/Entertainment	0	0	0		0	0				
Residential	4	32	18	0		0				
Hotel	4	8	6	0	0					

	Table 9-A (D): Internal and External Trips Summary (Entering Trips)										
5		Person-Trip Esti	mates			External Trips by Mode*					
Destination Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²				
Office	25	116	141		116	0	0				
Retail	17	171	188		171	0	0				
Restaurant	53	39	92		39	0	0				
Cinema/Entertainment	0	0	0		0	0	0				
Residential	3	32	35		32	0	0				
Hotel	0	0	0		0	0	0				
All Other Land Uses ³	0	0	0		0	0	0				

	T	able 9-A (O): In	ternal and External	Trips Summary (Exiting 1	rips)	_
0.3.3.1		Person-Trip Esti	mates		External Trips by Mode*	
Origin Land Use	Internal	External	Total	Vehicles ¹	Transit ²	Non-Motorized ²
Office	26	3	29	3	0	0
Retail	24	103	127	103	0	0
Restaurant	27	27	54	27	0	0
Cinema/Entertainment	0	0	0	0	0	0
Residential	21	69	90	69	0	0
Hotel	0	0	0	0	0	0
All Other Land Uses ³	0	0	0	0	0	0

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator

*Indicates computation that has been rounded to the nearest whole number.

NCHRP 684 Internal Trip Capture Estimation Tool									
Project Name:	Ragan-Smith Associates								
Project Location:	Thompson's Station, TN		Performed By:	bsb					
Scenario Description:	Town Center		Date:	10/4/2018					
Analysis Year:	2027		Checked By:						
Analysis Period:	PM Street Peak Hour		Date:						

	Table 1	-P: Base Vehicle	e-Trip Generation	Estimates (Single-Use	Site Estimate)	
Land Use	Developme	ent Data (<i>For Info</i>	ormation Only)		Estimated Vehicle-Trips ³	
Land OSE	ITE LUCs1	Quantity	Units	Total	Entering	Exiting
Office	710 & 720	79,842	GSF	234	54	180
Retail	Various	50,062	GSF	439	214	225
Restaurant	Various	14,571	GSF	178	102	76
Cinema/Entertainment				0		
Residential	220	231	Units	154	91	63
Hotel				0		
All Other Land Uses ²				0		
				1,005	461	544

Table 2-P: Mode Split and Vehicle Occupancy Estimates										
Landlin		Entering Tri	ps		Exiting Trips					
Land Use	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ.4	% Transit	% Non-Motorized			
Office	1.00	0%	0%		1.00	0%	0%			
Retail	1.00	0%	0%		1.00	0%	0%			
Restaurant	1.00	0%	0%		1.00	0%	0%			
Cinema/Entertainment										
Residential	1.00	0%	0%		1.00	0%	0%			
Hotel	1.00	0%	0%		1.00	0%	0%			
All Other Land Uses ²										

	Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)										
Origin (From)		Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		1000	1000		1000						
Retail					1000						
Restaurant					1000						
Cinema/Entertainment					1000						
Residential		1000	1000								
Hotel					1000						

	Table 4-P: Internal Person-Trip Origin-Destination Matrix*											
Origin (From)		Destination (To)										
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel						
Office		13	2	0	3	0						
Retail	5		30	0	42	0						
Restaurant	2	31		0	13	0						
Cinema/Entertainment	0	0	0		0	0						
Residential	3	16	10	0		0						
Hotel	0	0	0	0	0							

Table 5-P: Computations Summary									
	Total	Entering	Exiting						
All Person-Trips	1,005	461	544						
Internal Capture Percentage	34%	37%	31%						
External Vehicle-Trips ⁵	665	291	374						
External Transit-Trips ⁶	0	0	0						
External Non-Motorized Trips ⁶	0	0	0						

Table 6-P: Internal Trip Capture Percentages by Land Use									
Land Use	Entering Trips	Exiting Trips							
Office	19%	10%							
Retail	28%	34%							
Restaurant	41%	61%							
Cinema/Entertainment	N/A	N/A							
Residential	64%	46%							
Hotel	N/A	N/A							

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be ⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

Project Name:	Tollgate Village
Analysis Period:	PM Street Peak Hour

Table 7-P: Conversion of Vehicle-Trip Ends to Person-Trip Ends										
Lead Hee	Table	Table 7-P (D): Entering Trips				Table 7-P (O): Exiting Trips				
Land Use	Veh. Occ.	Vehicle-Trips	Person-Trips*		Veh. Occ.	Vehicle-Trips	Person-Trips*			
Office	1.00	54	54		1.00	180	180			
Retail	1.00	214	214		1.00	225	225			
Restaurant	1.00	102	102		1.00	76	76			
Cinema/Entertainment	1.00	0	0		1.00	0	0			
Residential	1.00	91	91		1.00	63	63			
Hotel	1.00	0	0		1.00	0	0			

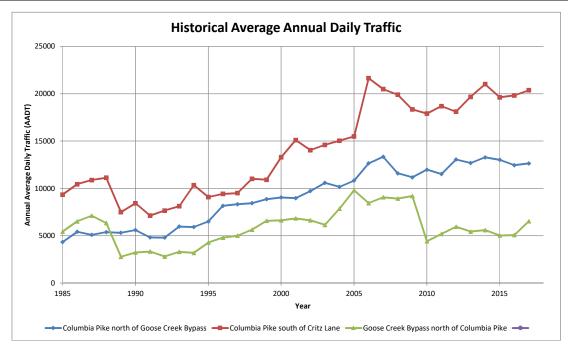
Table 8-P (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)											
Origin (Frame)		Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		27	5	0	3	0					
Retail	5		65	9	54	11					
Restaurant	2	31		6	13	5					
Cinema/Entertainment	0	0	0		0	0					
Residential	3	20	10	10 0							
Hotel	0	0	0	0	0						

Origin (Fram)		Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office	13	2	2 0	4	0						
Retail	17		30	0	42	0					
Restaurant	16	107		0	15	0					
Cinema/Entertainment	3	9	3		4	0					
Residential 31 16 11 0											
Hotel	0	4	5	0	0						

	Table 9-P (D): Internal and External Trips Summary (Entering Trips)										
Destination Land Use	P	Person-Trip Estimates				External Trips by Mode*					
Destination Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²				
Office	10	44	54		44	0	0				
Retail	60	154	214		154	0	0				
Restaurant	42	60	102		60	0	0				
Cinema/Entertainment	0	0	0		0	0	0				
Residential	58	33	91		33	0	0				
Hotel	0	0	0		0	0	0				
All Other Land Uses ³	0	0	0		0	0	0				

Table 9-P (O): Internal and External Trips Summary (Exiting Trips)										
Origin Land Has	P	Person-Trip Estimates				External Trips by Mode*				
Origin Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²			
Office	18	162	180		162	0	0			
Retail	77	148	225		148	0	0			
Restaurant	46	30	76		30	0	0			
Cinema/Entertainment	0	0	0		0	0	0			
Residential	29	34	63		34	0	0			
Hotel	0	0	0		0	0	0			
All Other Land Uses ³	0	0	0		0	0	0			

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P


²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator

*Indicates computation that has been rounded to the nearest whole number.

APPENDIX C TRAFFIC ASSIGNMENT WORKSHEETS

HISTORICAL TRAFFIC COUNT DATA							
Year	Columbia Pike north of Goose Creek Bypass	Columbia Pike south of Critz Lane	Goose Creek Bypass north of Columbia Pike				
1985	4334	9342	5436				
1986	5414	10443	6523				
1987	5093	10883	7119				
1988	5376	11127	6339				
1989	5310	7490	2780				
1990	5600	8427	3228				
1991	4817	7117	3332				
1992	4800	7654	2800				
1993	5968	8121	3304				
1994	5917	10337	3191				
1995	6506	9079	4283				
1996	8162	9418	4796				
1997	8326	9499	5010				
1998	8438	11015	5644				
1999	8863	10915	6579				
2000	9051	13289	6632				
2001	8968	15108	6831				
2002	9724	14037	6631				
2003	10583	14599	6149				
2004	10163	15037	7866				
2005	10816	15488	9804				
2006	12646	21645	8447				
2007	13345	20488	9065				
2008	11593	19891	8932				
2009	11170	18342	9199				
2010	11976	17900	4411				
2011	11513	18685	5191				
2012	13049	18101	5953				
2013	12682	19666	5441				
2014	13281	21013	5604				
2015	13018	19620	5027				
2016	12450	19816	5077				
2017	12640	20370	6540				

		Columbia Pike north of Goose Creek Bypass	Columbia Pike south of Critz Lane	Goose Creek Bypass north of Columbia Pike	-
Analysis	Begin	2004	2002	2010	=
Period	End	2017	2017	2017	=
Futur	re Year	2027	2027	2027	=
Forecasted 1	Traffic Volume	14477	24418	7289	=
Annual G	rowth Rate	1.37%	1.83%	1.09%	-
Growt	h Factor	1.145	1.199	1.115	-

TOLLGATE VILLA 2022 HO	GE TRIP RIZON YI		TION				
Davelanment	Daily	A.N	/I. Peak H	our	P.M	1. Peak H	our
Development	Daily	Enter	Exit	Total	Enter	Exit	Total
Tollgate Village (Vacant Portions of the Shelter Insurance Office Building and the Tollgate Medical Plaza, and the Tollgate Village Town Center)	7,763	240	219	459	272	288	560
				0			0
				0			0
				0			0
				0			0
				0			0
TOTAL	7,763	240	219	459	272	288	560

TOLLGA	TE VILLAGE TRIP 2027 HORIZON YE		TION						
Dovalonment	Daily	A.N	/I. Peak H	our	P.N	1. Peak H	our		
Development	Daily	Enter	Exit	Total	Enter	Exit	Total		
Tollgate Village (Full Build-Out)	11,909	415	331	746	408	458	866		
				0			0		
				0			0		
				0			0		
				0			0		
				0			0		
TOTAL	11,909	415	331	746	408	458	866		

TRAFFIC VOLUME WORKSHEET COLUMBIA PIKE AT TOLLGATE BOULEVARD A.M. PEAK HOUR

Description		Northboun			outhboun			Eastbound ate Bould		٧	Vestboun	d
Description	Left	Thru	Right	Left	Thru	rike Right	Left	Thru	Right	Left	Thru	Right
2018 EXISTING TRAFFIC VOLUMES	86	874	<u> </u>		611	35	145		138			
2022 BACKGROUND TRAFFIC VOLUMES												
Annual Background Growth	l											
Growth Rate (%/year)		2.5			2.5							
Growth Factor	1.00	1.10	1.00	1.00	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Annual Background Growth Trips	0	91	0	0	63	0	0	0	0	0	0	0
2022 Background Traffic Volumes	86	965	0	0	674	35	145	0	138	0	0	0
2022 SITE TRAFFIC VOLUMES												
Tollgate Village (Vacant Portions of the Shelter Insurance % In	50					45						
Office Building and the Tollgate Medical % Out					5		50		45			
Center) Trips	120	0	0	0	11	108	110	0	99	0	0	0
2022 Site Traffic Volumes	120	0	0	0	11	108	110	0	99	0	0	0
2022 TOTAL TRAFFIC VOLUMES	206	965	0	0	685	143	255	0	237	0	0	0
2027 BACKGROUND TRAFFIC VOLUMES												
Annual Background Growth	l											
Growth Rate (%)		2.5			2.5							
Growth Factor	1.00	1.25	1.00	1.00	1.25	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Annual Background Growth Trips	0	218	0	0	152	0	0	0	0	0	0	0
2027 Background Traffic Volumes	86	1092	0	0	763	35	145	0	138	0	0	0
2027 TOTAL TRAFFIC VOLUMES												
% In Tollgate Village (Full Build-Out) % Out	45				5	45	50		40			
Trips	187	0	0	0	17	187	166	0	132	0	0	0
2027 Site Traffic Volumes	187	0	0	0	17	187	166	0	132	0	0	0
2027 TOTAL TRAFFIC VOLUMES	273	1092	0	0	780	222	311	0	270	0	0	0

TRAFFIC VOLUME WORKSHEET COLUMBIA PIKE AT TOLLGATE BOULEVARD P.M. PEAK HOUR

Description		Northboun			Southboun			Eastbound ate Bould		\	Vestboun	d
Description	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
2018 EXISTING TRAFFIC VOLUMES	85	670			925	161	71		103			
2022 BACKGROUND TRAFFIC VOLUMES												
Annual Background Growth												
Growth Rate (%/year)		2.5			2.5							
Growth Factor	1.00	1.10	1.00	1.00	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Annual Background Growth Trips	0	70	0	0	96	0	0	0	0	0	0	0
2022 Background Traffic Volumes	85	740	0	0	1021	161	71	0	103	0	0	0
2022 SITE TRAFFIC VOLUMES												
Tollgate Village % In	50					45						
(Vacant Portions of the Shelter Insurance Office Building and the Tollgate Medical												
Plaza, and the Tollgate Village Town We Out					5		50		45			
Center) Trips	136	0	0	0	14	122	144	0	130	0	0	0
2022 Site Traffic Volumes	136	0	0	0	14	122	144	0	130	0	0	0
2022 Oile Traine volunes	100		•	Ů		122	144		100	Ů		
2022 TOTAL TRAFFIC VOLUMES	221	740	0	0	1035	283	215	0	233	0	0	0
2027 BACKGROUND TRAFFIC VOLUMES												
Annual Background Growth												
Growth Rate (%)		2.5			2.5							
Growth Factor	1.00	1.25	1.00	1.00	1.25	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Annual Background Growth Trips	0	167	0	0	230	0	0	0	0	0	0	0
2027 Background Traffic Volumes	85	837	0	0	1155	161	71	0	103	0	0	0
2027 TOTAL TRAFFIC VOLUMES												
% In	45					45						
Tollgate Village (Full Build-Out) % Out Trips	184	0	0	0	5 23	184	50 229	0	40 183	0	0	0
Пр	154	<u> </u>	<u> </u>	,		104		<u> </u>	100	,	<u> </u>	
2027 Site Traffic Volumes	184	0	0	0	23	184	229	0	183	0	0	0
2027 TOTAL TRAFFIC VOLUMES	269	837	0	0	1178	345	300	0	286	0	0	0

TRAFFIC VOLUME WORKSHEET COLUMBIA PIKE AT NORTH ACCESS A.M. PEAK HOUR

Description		Northboun			Southbour Iumbia P			Eastbound		'	Westboun	.d
Description	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
2018 EXISTING TRAFFIC VOLUMES		1019			654	3			0			
2022 BACKGROUND TRAFFIC VOLUMES												-
Annual Background Growth												
Growth Rate (%/year)		3.0			3.0							
Growth Factor	1.00	1.13	1.00	1.00	1.13	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Annual Background Growth Trip	s 0	128	0	0	82	0	0	0	0	0	0	0
2022 Background Traffic Volume	s 0	1147	0	0	736	3	0	0	0	0	0	0
2022 SITE TRAFFIC VOLUMES												
Tollgate Village (Vacant Portions of the Shelter Insurance % In					45	5						
Office Building and the Tollgate Medical Plaza, and the Tollgate Village Town W Ou	t	50							5			
Center) Trips	0	110	0	0	108	12	0	0	11	0	0	0
2022 Site Traffic Volume	s 0	110	0	0	108	12	0	0	11	0	0	0
2022 TOTAL TRAFFIC VOLUMES	0	1257	0	0	844	15	0	0	11	0	0	0
2027 BACKGROUND TRAFFIC VOLUMES	1											
Annual Background Growth												
Growth Rate (%)		3.0			3.0							
Growth Factor	1.00	1.30	1.00	1.00	1.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Annual Background Growth Trip	s 0	311	0	0	199	0	0	0	0	0	0	0
2027 Background Traffic Volume	s 0	1330	0	0	853	3	0	0	0	0	0	0
2027 TOTAL TRAFFIC VOLUMES												
% In Tollgate Village (Full Build-Out) % Ou Trips	t	50 166	0	0	45 187	5 21	0	0	5 17	0	0	0
2027 Site Traffic Volume	s 0	166	0	0	187	21	0	0	17	0	0	0
2027 TOTAL TRAFFIC VOLUMES	0	1496	0	0	1040	24	0	0	17	0	0	0

TRAFFIC VOLUME WORKSHEET COLUMBIA PIKE AT NORTH ACCESS P.M. PEAK HOUR

Description		Northboun			outhboun			Eastbound orth Acce		١	Vestboun	d
Безсприон	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
2018 EXISTING TRAFFIC VOLUMES		741			1079	1			4			
2022 BACKGROUND TRAFFIC VOLUMES												
Annual Background Growth												
Growth Rate (%/year)		2.5			2.5							
Growth Factor	1.00	1.10	1.00	1.00	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Annual Background Growth Trips	0	77	0	0	112	0	0	0	0	0	0	0
2022 Background Traffic Volumes	0	818	0	0	1191	1	0	0	4	0	0	0
2022 SITE TRAFFIC VOLUMES												
Tollgate Village (Vacant Portions of the Shelter Insurance % In					45	5						
Office Building and the Tollgate Medical Plaza, and the Tollgate Village Town % Out		50							5			
Center) Trips	0	144	0	0	122	14	0	0	14	0	0	0
2022 Site Traffic Volumes	0	144	0	0	122	14	0	0	14	0	0	0
2022 TOTAL TRAFFIC VOLUMES	0	962	0	0	1313	15	0	0	18	0	0	0
2027 BACKGROUND TRAFFIC VOLUMES												
Annual Background Growth												
Growth Rate (%)		2.5			2.5							
Growth Factor Annual Background Growth Trips	1.00 0	1.25 184	1.00 0	1.00 0	1.25 269	1.00 0	1.00 0	1.00 0	1.00 0	1.00 0	1.00 0	1.00 0
2027 Background Traffic Volumes	0	925	0	0	1348	1	0	0	4	0	0	0
2027 TOTAL TRAFFIC VOLUMES												
% In					45	5						
Tollgate Village (Full Build-Out) % Out Trips	0	50 229	0	0	45 184	20	0	0	5 23	0	0	0
2027 Site Traffic Volumes	0	229	0	0	184	20	0	0	23	0	0	0
2027 TOTAL TRAFFIC VOLUMES	0	1154	0	0	1532	21	0	0	27	0	0	0

TRAFFIC VOLUME WORKSHEET COLUMBIA PIKE AT DECLARATION WAY A.M. PEAK HOUR

December 2		Northboun			outhbour			Eastbound		'	Vestboun	d
Description	Left	olumbia P Thru	Right	Left	lumbia P Thru	rike Right	Left	laration \ Thru	way Right	Left	Thru	Right
2018 EXISTING TRAFFIC VOLUMES	562	869			352	397	113		252			
2022 BACKGROUND TRAFFIC VOLUMES												
Annual Background Growth												
Growth Rate (%/year) Growth Factor Annual Background Growth Trips	1.00	2.5 1.10 90	1.00 0	1.00 0	2.5 1.10 37	1.00	1.00	1.00 0	1.00	1.00	1.00	1.00
2022 Background Traffic Volumes		959	0	0	389	397	113	0	252	0	0	0
2022 SITE TRAFFIC VOLUMES												
Tollgate Village (Vacant Portions of the Shelter Insurance Office Building and the Tollgate Medical % Out		50			50							
Plaza, and the Tollgate Village Town Center) Trips	0	120	0	0	110	0	0	0	0	0	0	0
2022 Site Traffic Volumes	0	120	0	0	110	0	0	0	0	0	0	0
2022 TOTAL TRAFFIC VOLUMES	562	1079	0	0	499	397	113	0	252	0	0	0
2027 BACKGROUND TRAFFIC VOLUMES												
Annual Background Growth												
Growth Rate (%) Growth Factor Annual Background Growth Trips	1.00	2.5 1.25 216	1.00 0	1.00 0	2.5 1.25 88	1.00	1.00	1.00 0	1.00 0	1.00	1.00	1.00 0
2027 Background Traffic Volumes	562	1085	0	0	440	397	113	0	252	0	0	0
2027 TOTAL TRAFFIC VOLUMES												
% In Tollgate Village (Full Build-Out) % Out Trips	5 21	45 187	0	0	45 149	0	0	0	5 17	0	0	0
2027 Site Traffic Volumes	21	187	0	0	149	0	0	0	17	0	0	0
2027 TOTAL TRAFFIC VOLUMES	583	1272	0	0	589	397	113	0	269	0	0	0

TRAFFIC VOLUME WORKSHEET COLUMBIA PIKE AT DECLARATION WAY P.M. PEAK HOUR

P.M. PEAK HOUR		Vorthboun			Southboun			Eastbound		١	Vestboun	d
Description	Left	olumbia P Thru	i ke Right	Left	lumbia P Thru	ike Right	Dec Left	laration \ Thru	Way Right	Left	Thru	Right
	Leit	IIIIu	Night	Leit	IIIIu	Right	Leit	IIIIu	Rigit	Leit	IIIIu	Rigiil
2018 EXISTING TRAFFIC VOLUMES	79	681			978	54	74		130			
2022 BACKGROUND TRAFFIC VOLUMES												
Annual Background Growth												
Growth Rate (%/year)		2.5			2.5							
Growth Factor	1.00	1.10	1.00	1.00	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Annual Background Growth Trips	0	71	0	0	102	0	0	0	0	0	0	0
2022 Background Traffic Volumes	79	752	0	0	1080	54	74	0	130	0	0	0
2022 SITE TRAFFIC VOLUMES												
Tollgate Village (Vacant Portions of the Shelter Insurance % In		50										
Office Building and the Tollgate Medical % Out					50							
Plaza, and the Tollgate Village Town Center)												
Trips	0	136	0	0	144	0	0	0	0	0	0	0
2022 Site Traffic Volumes	0	136	0	0	144	0	0	0	0	0	0	0
2022 TOTAL TRAFFIC VOLUMES	79	888	0	0	1224	54	74	0	130	0	0	0
2027 BACKGROUND TRAFFIC VOLUMES												
Annual Background Growth												
Growth Rate (%)		2.5			2.5							
Growth Factor	1.00	1.25	1.00	1.00	1.25	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Annual Background Growth Trips	0	169	0	0	243	0	0	0	0	0	0	0
2027 Background Traffic Volumes	79	850	0	0	1221	54	74	0	130	0	0	0
2027 TOTAL TRAFFIC VOLUMES												
% In	5	45										
Tollgate Village (Full Build-Out) % Out Trips	20	184	0	0	45 206	0	0	0	5 23	0	0	0
2027 Site Traffic Volumes	20	184	0	0	206	0	0	0	23	0	0	0
2027 TOTAL TRAFFIC VOLUMES	99	1034	0	0	1427	54	74	0	153	0	0	0

TRAFFIC VOLUME WORKSHEET DECLARATION WAY AT SOUTH ACCESS A.M. PEAK HOUR

Description		Northboun		So	outhboun	ss	Dec	Eastbound	Way	Dec	Westboun	Way
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
2018 EXISTING TRAFFIC VOLUMES								365			959	
2022 BACKGROUND TRAFFIC VOLUMES												
Annual Background Growth												
Growth Rate (%/year)												
Growth Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Annual Background Growth Trips	0	0	0	0	0	0	0	0	0	0	0	0
2022 Background Traffic Volumes	0	0	0	0	0	0	0	365	0	0	959	0
2022 SITE TRAFFIC VOLUMES												
Tollgate Village (Vacant Portions of the Shelter Insurance Office Building and the Tollgate Medical Plaza, and the Tollgate Village Town "" Out												
Center) Trips	0	0	0	0	0	0	0	0	0	0	0	0
2022 Site Traffic Volumes	0	0	0	0	0	0	0	0	0	0	0	0
2022 TOTAL TRAFFIC VOLUMES	0	0	0	0	0	0	0	365	0	0	959	0
2027 BACKGROUND TRAFFIC VOLUMES												
Annual Background Growth												
Growth Rate (%) Growth Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Annual Background Growth Trips	0	0	0	0	0	0	0	0	0	0	0	0
2027 Background Traffic Volumes	0	0	0	0	0	0	0	365	0	0	959	0
2027 TOTAL TRAFFIC VOLUMES												
% In Tollgate Village (Full Build-Out) % Out Trips	0	0	0	5 17	0	0	0	0	0	0	0	5 21
2027 Site Traffic Volumes	0	0	0	17	0	0	0	0	0	0	0	21
2027 TOTAL TRAFFIC VOLUMES	0	0	0	17	0	0	0	365	0	0	959	21

TRAFFIC VOLUME WORKSHEET DECLARATION WAY AT SOUTH ACCESS P.M. PEAK HOUR

Description	ı	Northboun	d		Southboun			Eastbound			Westboun	
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
2018 EXISTING TRAFFIC VOLUMES								204			133	
2022 BACKGROUND TRAFFIC VOLUMES												
Annual Background Growth												
Growth Rate (%/year)												
Growth Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Annual Background Growth Trips	0	0	0	0	0	0	0	0	0	0	0	0
2022 Background Traffic Volumes	0	0	0	0	0	0	0	204	0	0	133	0
2022 SITE TRAFFIC VOLUMES												
Tollgate Village (Vacant Portions of the Shelter Insurance Office Building and the Tollgate Medical Plaza, and the Tollgate Village Town Center) * Out												
Trips	0	0	0	0	0	0	0	0	0	0	0	0
2022 Site Traffic Volumes	0	0	0	0	0	0	0	0	0	0	0	0
2022 TOTAL TRAFFIC VOLUMES	0	0	0	0	0	0	0	204	0	0	133	0
2027 BACKGROUND TRAFFIC VOLUMES												
Annual Background Growth												
Growth Rate (%) Growth Factor Annual Background Growth Trips	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 0	1.00	1.00	1.00	1.00
2027 Background Traffic Volumes		0	0	0	0	0	0	204	0	0	133	0
2027 TOTAL TRAFFIC VOLUMES												
% In Tollgate Village (Full Build-Out) % Out Trips	0	0	0	5 23	0	0	0	0	0	0	0	5 20
2027 Site Traffic Volumes	0	0	0	23	0	0	0	0	0	0	0	20
2027 TOTAL TRAFFIC VOLUMES	0	0	0	23	0	0	0	204	0	0	133	20

APPENDIX D CAPACITY ANALYSIS WORKSHEETS EXISTING CONDITIONS

	•	•	1	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	7	7	^	^	7
Traffic Volume (vph)	145	138	86	874	611	35
Future Volume (vph)	145	138	86	874	611	35
Turn Type	Prot	pm+ov	pm+pt	NA	NA	pm+ov
Protected Phases	4	5	5	2	6	4
Permitted Phases		4	2			6
Detector Phase	4	5	5	2	6	4
Switch Phase						
Minimum Initial (s)	7.0	4.0	4.0	10.0	10.0	7.0
Minimum Split (s)	12.5	10.0	10.0	16.0	16.0	12.5
Total Split (s)	40.0	25.0	25.0	80.0	55.0	40.0
Total Split (%)	33.3%	20.8%	20.8%	66.7%	45.8%	33.3%
Yellow Time (s)	3.2	4.3	4.3	4.3	4.3	3.2
All-Red Time (s)	2.3	1.7	1.7	1.7	1.7	2.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	6.0	6.0	6.0	6.0	5.5
Lead/Lag		Lead	Lead		Lag	
Lead-Lag Optimize?		Yes	Yes		Yes	
Recall Mode	None	None	None	Min	Min	None

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 52.3

Natural Cycle: 40

Control Type: Semi Act-Uncoord

	۶	•	•	†		4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u> </u>	7	ሻ	^	^	7
Traffic Volume (veh/h)	145	138	86	874	611	35
Future Volume (veh/h)	145	138	86	874	611	35
Number	7	14	5	2	6	16
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00	U	U	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1900	1900	1863	1863	1900
	158	150	93	950	664	38
Adj Flow Rate, veh/h	100		93			აი 1
Adj No. of Lanes		1		2	2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	0	0	0	2	2	0
Cap, veh/h	275	344	467	2098	1410	889
Arrive On Green	0.15	0.15	0.06	0.59	0.40	0.40
Sat Flow, veh/h	1810	1615	1810	3632	3632	1615
Grp Volume(v), veh/h	158	150	93	950	664	38
Grp Sat Flow(s),veh/h/ln	1810	1615	1810	1770	1770	1615
Q Serve(g_s), s	3.7	3.6	1.2	6.7	6.3	0.5
Cycle Q Clear(g_c), s	3.7	3.6	1.2	6.7	6.3	0.5
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	275	344	467	2098	1410	889
V/C Ratio(X)	0.57	0.44	0.20	0.45	0.47	0.04
Avail Cap(c_a), veh/h	1386	1335	1119	5813	3849	2002
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
	17.7	15.4	6.7	5.1	10.0	4.7
Uniform Delay (d), s/veh	1.9	0.9	0.7	0.2	0.2	
Incr Delay (d2), s/veh						0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	3.5	6.2	1.1	5.8	5.6	0.5
LnGrp Delay(d),s/veh	19.6	16.2	6.9	5.3	10.3	4.7
LnGrp LOS	В	В	A	A	В	A
Approach Vol, veh/h	308			1043	702	
Approach Delay, s/veh	18.0			5.4	10.0	
Approach LOS	В			Α	Α	
Timer	1	2	3	4	5	6
		2	J			
Assigned Phs				4	5	6
Phs Duration (G+Y+Rc), s		32.7		12.4	8.8	24.0
Change Period (Y+Rc), s		* 6		5.5	* 6	* 6
Max Green Setting (Gmax), s		* 74		34.5	* 19	* 49
Max Q Clear Time (g_c+l1), s		8.7		5.7	3.2	8.3
Green Ext Time (p_c), s		10.1		1.3	0.2	9.7
Intersection Summary						
HCM 2010 Ctrl Delay			8.9			
HCM 2010 Cur Delay			0.9 A			
I IOW ZU IU LUS			А			
Notes						

IIIEISECHOLI						
Intersection Int Delay, s/veh	0					
					05-	055
	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		^	∱ ∱	
Traffic Vol, veh/h	0	0	0	1019	645	3
Future Vol, veh/h	0	0	0	1019	645	3
Conflicting Peds, #/hr	0	0	0	0	0	0
	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	1108	701	3
	inor2		/lajor1		/lajor2	
Conflicting Flow All	-	352	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	644	0	-	-	-
Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	_	644	_	_	_	-
Mov Cap-2 Maneuver	_	_	-	-	_	-
Stage 1	_	_	_	_	_	_
Stage 2		_	_	_	_	_
	-					
Stage 2	-					
_	_					
Approach	EB		NB		SB	
Approach HCM Control Delay, s	0		NB 0		SB 0	
Approach						
Approach HCM Control Delay, s	0					
Approach HCM Control Delay, s HCM LOS	0	NDT	0	CDT	0	
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt	0	NBT E	0	SBT		
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h)	0	-	0 EBLn1 -	-	0 SBR	
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	0	-	0 EBLn1 - -	-	0 SBR -	
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	0	- - -	0 =BLn1 - - 0	- - -	0 SBR - -	
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	0	-	0 EBLn1 - -	-	0 SBR -	

3: Columbia Pk & Declaration Way

	•	•	1	†	Ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Ť	7	ሻ	^	† †	7
Traffic Volume (vph)	113	252	562	869	352	397
Future Volume (vph)	113	252	562	869	352	397
Turn Type	Prot	Prot	Prot	NA	NA	Perm
Protected Phases	4	4	5	2	6	
Permitted Phases						6
Detector Phase	4	4	5	2	6	6
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	28.0	28.0	15.0	28.0	28.0	28.0
Total Split (s)	31.0	31.0	56.0	119.0	63.0	63.0
Total Split (%)	20.7%	20.7%	37.3%	79.3%	42.0%	42.0%
Yellow Time (s)	6.0	6.0	6.0	6.0	6.0	6.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	9.0	9.0	9.0	9.0	9.0	9.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Recall Mode	None	None	None	Min	Min	Min

Intersection Summary

Cycle Length: 150

Actuated Cycle Length: 138.2

Natural Cycle: 110

Control Type: Actuated-Uncoordinated

-	ၨ	•	•	†		4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	^	^	7
Traffic Volume (veh/h)	113	252	562	869	352	397
Future Volume (veh/h)	113	252	562	869	352	397
Number	7	14	5	2	6	16
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863
Adj Flow Rate, veh/h	120	268	598	924	374	422
Adj No. of Lanes	1	1	1	2	2	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	275	245	587	2543	1148	513
Arrive On Green	0.15	0.15	0.33	0.72	0.32	0.32
Sat Flow, veh/h	1774	1583	1774	3632	3632	1583
Grp Volume(v), veh/h	120	268	598	924	374	422
Grp Sat Flow(s),veh/h/ln	1774	1583	1774	1770	1770	1583
Q Serve(g_s), s	8.7	22.0	47.0	14.1	11.3	34.9
Cycle Q Clear(g_c), s	8.7	22.0	47.0	14.1	11.3	34.9
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	275	245	587	2543	1148	513
V/C Ratio(X)	0.44	1.09	1.02	0.36	0.33	0.82
Avail Cap(c_a), veh/h	275	245	587	2740	1345	602
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	54.4	60.0	47.5	7.6	36.3	44.2
Incr Delay (d2), s/veh	1.1	84.6	42.0	0.1	0.2	7.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	7.8	27.7	53.7	11.1	9.5	23.0
LnGrp Delay(d),s/veh	55.5	144.6	89.5	7.7	36.4	52.1
LnGrp LOS	55.5 E	F	09.5 F	Α.	50.4 D	J2.1
	388	<u>'</u>	<u>'</u>	1522	796	<u> </u>
Approach Vol, veh/h						
	117.0			39.9	44.7	
Approach LOS	F			D	D	
Timer	1	2	3	4	5	6
Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		111.1		31.0	56.0	55.1
Change Period (Y+Rc), s		9.0		9.0	9.0	9.0
Max Green Setting (Gmax), s		110.0		22.0	47.0	54.0
Max Q Clear Time (g_c+l1), s		16.1		24.0	49.0	36.9
Green Ext Time (p_c), s		14.7		0.0	0.0	9.2
		17.7		0.0	0.0	J.Z
Intersection Summary						
HCM 2010 Ctrl Delay			52.4			
HCM 2010 LOS			D			

	•	•	1	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	^	^	7
Traffic Volume (vph)	71	103	85	670	925	161
Future Volume (vph)	71	103	85	670	925	161
Turn Type	Prot	pm+ov	pm+pt	NA	NA	pm+ov
Protected Phases	4	5	5	2	6	4
Permitted Phases		4	2			6
Detector Phase	4	5	5	2	6	4
Switch Phase						
Minimum Initial (s)	7.0	4.0	4.0	10.0	10.0	7.0
Minimum Split (s)	12.5	10.0	10.0	16.0	16.0	12.5
Total Split (s)	40.0	25.0	25.0	80.0	55.0	40.0
Total Split (%)	33.3%	20.8%	20.8%	66.7%	45.8%	33.3%
Yellow Time (s)	3.2	4.3	4.3	4.3	4.3	3.2
All-Red Time (s)	2.3	1.7	1.7	1.7	1.7	2.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	6.0	6.0	6.0	6.0	5.5
Lead/Lag		Lead	Lead		Lag	
Lead-Lag Optimize?		Yes	Yes		Yes	
Recall Mode	None	None	None	Min	Min	None

Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 58 Natural Cycle: 45

Control Type: Semi Act-Uncoord

	ၨ	•	•	†		4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7		^	^	7
Traffic Volume (veh/h)	71	103	85	670	925	161
Future Volume (veh/h)	71	103	85	670	925	161
Number	7	14	5	2	6	16
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00	J	J J	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1900	1900	1863	1863	1900
•	77	112	92	728	1005	175
Adj Flow Rate, veh/h			92			
Adj No. of Lanes	1	1		2	2	1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	0	0	0	2	2	0
Cap, veh/h	230	297	372	2295	1680	972
Arrive On Green	0.13	0.13	0.06	0.65	0.47	0.47
Sat Flow, veh/h	1810	1615	1810	3632	3632	1615
Grp Volume(v), veh/h	77	112	92	728	1005	175
Grp Sat Flow(s),veh/h/ln	1810	1615	1810	1770	1770	1615
Q Serve(g_s), s	2.0	3.1	1.2	4.7	10.7	2.5
Cycle Q Clear(g_c), s	2.0	3.1	1.2	4.7	10.7	2.5
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	230	297	372	2295	1680	972
V/C Ratio(X)	0.33	0.38	0.25	0.32	0.60	0.18
Avail Cap(c_a), veh/h	1217	1178	939	5106	3381	1748
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	20.4	18.3	6.9	4.0	9.9	4.6
Uniform Delay (d), s/veh						
Incr Delay (d2), s/veh	0.8	0.8	0.3	0.1	0.3	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	1.9	5.3	1.1	4.0	9.0	2.7
LnGrp Delay(d),s/veh	21.3	19.1	7.3	4.1	10.2	4.6
LnGrp LOS	<u> </u>	В	A	Α	В	A
Approach Vol, veh/h	189			820	1180	
Approach Delay, s/veh	20.0			4.4	9.4	
Approach LOS	В			Α	Α	
Timer	1	2	3	4	5	6
	<u> </u>	2	<u> </u>			
Assigned Phs				4	5	6
Phs Duration (G+Y+Rc), s		39.3		12.0	8.9	30.3
Change Period (Y+Rc), s		* 6		5.5	* 6	* 6
Max Green Setting (Gmax), s		* 74		34.5	* 19	* 49
Max Q Clear Time (g_c+l1), s		6.7		5.1	3.2	12.7
Green Ext Time (p_c), s		12.7		0.8	0.2	11.7
Intersection Summary						
HCM 2010 Ctrl Delay			8.5			
HCM 2010 Ctrl Delay						
HCM 2010 LOS			Α			
Notes						

Intersection						
Int Delay, s/veh	0					
<u> </u>		EDD	ND	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		- 7		^	Α̈́β	
Traffic Vol, veh/h	0	4	0	741	1079	1
Future Vol, veh/h	0	4	0	741	1079	1
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	4	0	805	1173	1
Majay/Minay	lin a "O		1-1-14		Ania TO	
	linor2		//ajor1		Major2	
Conflicting Flow All	-	587	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	453	0	-	-	-
Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	_	453	_	_	_	-
Mov Cap-2 Maneuver	_	-	-	_	_	-
Stage 1	_	_	_	_	_	_
Stage 2	_	_	_	_	_	_
Clayo L						
Approach	EB		NB		SB	
HCM Control Delay, s	13		0		0	
HCM LOS	В					
Minor Lane/Major Mvmt		NBT E	-RIn1	SBT	SBR	
Capacity (veh/h)		-	453	-	-	
HCM Lane V/C Ratio		-	0.01	-	-	
HCM Control Delay (s)		-	13	-	-	
HCM Lane LOS		-	В	-	-	
HCM 95th %tile Q(veh)		-	0	-	-	

Intersection						
Int Delay, s/veh	2.6					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u></u>	120	<u>ነ</u>	^	^	7
Traffic Vol, veh/h	74	130	79	681	978	54
Future Vol, veh/h	74	130	79	681	978	54
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-		-	None	-	None
Storage Length	0	250	560	-	-	150
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	79	138	84	724	1040	57
						<u>.</u>
	Minor2		//ajor1		Major2	
Conflicting Flow All	1570	520	1040	0	-	0
Stage 1	1040	-	-	-	-	-
Stage 2	530	_	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	_	-	-	_
Critical Hdwy Stg 2	5.84	_	_	_	_	_
Follow-up Hdwy	3.52	3.32	2.22	_	_	_
Pot Cap-1 Maneuver	101	501	664	_	_	_
Stage 1	302	-	- 507	_	_	
Stage 2	555	_	-	-	-	_
	333	-	-			_
Platoon blocked, %	00	F04	004	-	-	-
Mov Cap-1 Maneuver		501	664	-	-	-
Mov Cap-2 Maneuver	207	-	-	-	-	-
Stage 1	302	-	-	-	-	-
Stage 2	485	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	21.4		1.2		0	
	21.4 C		1.2		U	
HCM LOS	U					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1 I	EBLn2	SBT
Capacity (veh/h)		664	-	207	501	_
HCM Lane V/C Ratio		0.127	_		0.276	_
HCM Control Delay (s)	11.2	_	32.7	14.9	_
HCM Lane LOS		В	_	52.7 D	В	_
HCM 95th %tile Q(veh	1)	0.4		1.7	1.1	
HOW SOM WINE MICE	1)	0.4	-	1.7	1.1	-

APPENDIX E

CAPACITY ANALYSIS WORKSHEETS 2022 BACKGROUND CONDITIONS

	•	•	1	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	7	ሻ	^	^	7
Traffic Volume (vph)	145	138	86	965	674	35
Future Volume (vph)	145	138	86	965	674	35
Turn Type	Prot	pm+ov	pm+pt	NA	NA	pm+ov
Protected Phases	4	5	5	2	6	4
Permitted Phases		4	2			6
Detector Phase	4	5	5	2	6	4
Switch Phase						
Minimum Initial (s)	7.0	4.0	4.0	10.0	10.0	7.0
Minimum Split (s)	12.5	10.0	10.0	16.0	16.0	12.5
Total Split (s)	43.0	30.0	30.0	77.0	47.0	43.0
Total Split (%)	35.8%	25.0%	25.0%	64.2%	39.2%	35.8%
Yellow Time (s)	3.2	4.3	4.3	4.3	4.3	3.2
All-Red Time (s)	2.3	1.7	1.7	1.7	1.7	2.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	6.0	6.0	6.0	6.0	5.5
Lead/Lag		Lead	Lead		Lag	
Lead-Lag Optimize?		Yes	Yes		Yes	
Recall Mode	None	None	None	Min	Min	None

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 53.8

Natural Cycle: 45

Control Type: Semi Act-Uncoord

		~	•	†	Ţ	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	T T	EBR	NDL 1			7 JOK
Traffic Volume (veh/h)	1 145	138	1 86	↑↑ 965	↑↑ 674	1 35
Future Volume (veh/h)	145	138	86	965	674	35
, ,	7	14	5	900		16
Number					6	
Initial Q (Qb), veh	0	0	1.00	0	0	1.00
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00	4.00	4.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1900	1900	1863	1863	1900
Adj Flow Rate, veh/h	154	147	91	1027	717	37
Adj No. of Lanes	1	1	1	2	2	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	0	0	0	2	2	0
Cap, veh/h	267	335	455	2138	1470	909
Arrive On Green	0.15	0.15	0.06	0.60	0.42	0.42
Sat Flow, veh/h	1810	1615	1810	3632	3632	1615
Grp Volume(v), veh/h	154	147	91	1027	717	37
Grp Sat Flow(s), veh/h/ln	1810	1615	1810	1770	1770	1615
Q Serve(g_s), s	3.7	3.7	1.2	7.5	6.9	0.5
Cycle Q Clear(g_c), s	3.7	3.7	1.2	7.5	6.9	0.5
Prop In Lane	1.00	1.00	1.00	7.0	5.5	1.00
Lane Grp Cap(c), veh/h	267	335	455	2138	1470	909
V/C Ratio(X)	0.58	0.44	0.20	0.48	0.49	0.04
` '	1463	1402	1284	5419	3129	1667
Avail Cap(c_a), veh/h	1.00		1.00	1.00		1.00
HCM Platoon Ratio		1.00			1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	18.4	16.0	6.6	5.1	9.9	4.5
Incr Delay (d2), s/veh	2.0	0.9	0.2	0.2	0.3	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	3.6	6.2	1.0	6.5	6.0	0.5
LnGrp Delay(d),s/veh	20.4	16.9	6.9	5.3	10.2	4.5
LnGrp LOS	С	В	Α	Α	В	Α
Approach Vol, veh/h	301			1118	754	
Approach Delay, s/veh	18.7			5.4	9.9	
Approach LOS	В			Α	Α	
•	4	•	2		_	^
Timer	1	2	3	4	5	6
Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		34.0		12.4	8.8	25.3
Change Period (Y+Rc), s		* 6		5.5	* 6	* 6
Max Green Setting (Gmax), s		* 71		37.5	* 24	* 41
Max Q Clear Time (g_c+l1), s		9.5		5.7	3.2	8.9
Green Ext Time (p_c), s		11.4		1.3	0.2	10.4
Intersection Summary						
HCM 2010 Ctrl Delay			8.8			
HCM 2010 LOS			Α			
Notes						

Intersection							J
Intersection Int Delay, s/veh	0						
•							
Movement	EBL	EBR	NBL	NBT	SBT	SBR	Į
Lane Configurations		7		^	∱ ∱		
Traffic Vol, veh/h	0	0	0	1147	736	3	
Future Vol, veh/h	0	0	0	1147	736	3	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	0	100	-	-	-	
Veh in Median Storage	e, # 1	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	0	0	1247	800	3	
N.A. '. (N.A'	. 4:				4 : 0		
	Minor2		Major1		Major2		
Conflicting Flow All	1425	402	803	0	-	0	
Stage 1	802	-	-	-	-	-	
Stage 2	623	-	-	-	-	-	
Critical Hdwy	6.84	6.94	4.14	-	-	-	
Critical Hdwy Stg 1	5.84	-	-	-	-	-	
Critical Hdwy Stg 2	5.84	-	-	-	-	-	
Follow-up Hdwy	3.52	3.32	2.22	-	-	-	
Pot Cap-1 Maneuver	126	598	817	-	-	-	
Stage 1	402	-	-	-	-	-	
Stage 2	497	-	-	-	-	-	
Platoon blocked, %				_	_	-	
Mov Cap-1 Maneuver	126	598	817	-	-	-	
Mov Cap-2 Maneuver	259	-	-	_	_	_	
Stage 1	402	_	_	_	_	_	
Stage 2	497	_	_	_	_	_	
Olugo Z	701		_				
Approach	EB		NB		SB		
HCM Control Delay, s	0		0		0		
HCM LOS	Α						
Minor Lane/Major Mvm	nt	NBL	NRT	EBLn1 E	-BI n2	SBT	
Capacity (veh/h)		817	11011		LULIIZ	ODI	
HCM Lane V/C Ratio			_	=	-	-	
		-	-	-	- 0	_	
HCM Control Delay (s)		0	-	0	0	-	
HCM Lane LOS HCM 95th %tile Q(veh	١	A	-	Α	Α	-	
HI W USTN VIIIA ()(VAN	1	0	-	-	-	-	

3: Columbia Pk & Declaration Way

	•	•	1	†	ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	^	^	7
Traffic Volume (vph)	113	252	562	959	389	397
Future Volume (vph)	113	252	562	959	389	397
Turn Type	Prot	Prot	Prot	NA	NA	Perm
Protected Phases	4	4	5	2	6	
Permitted Phases						6
Detector Phase	4	4	5	2	6	6
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	28.0	28.0	15.0	28.0	28.0	28.0
Total Split (s)	31.0	31.0	56.0	119.0	63.0	63.0
Total Split (%)	20.7%	20.7%	37.3%	79.3%	42.0%	42.0%
Yellow Time (s)	6.0	6.0	6.0	6.0	6.0	6.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	9.0	9.0	9.0	9.0	9.0	9.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Recall Mode	None	None	None	None	None	None

Intersection Summary

Cycle Length: 150

Actuated Cycle Length: 141.5

Natural Cycle: 140

Control Type: Actuated-Uncoordinated

_		`•	•	†	Ţ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	^	^	7
Traffic Volume (veh/h)	113	252	562	959	389	397
Future Volume (veh/h)	113	252	562	959	389	397
Number	7	14	5	2	6	16
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863
Adj Flow Rate, veh/h	128	286	639	1090	442	451
Adj No. of Lanes	1	1	1	2	2	1
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	268	240	573	2566	1203	538
Arrive On Green	0.15	0.15	0.32	0.72	0.34	0.34
Sat Flow, veh/h	1774	1583	1774	3632	3632	1583
Grp Volume(v), veh/h	128	286	639	1090	442	451
Grp Sat Flow(s), veh/h/ln	1774	1583	1774	1770	1770	1583
Q Serve(g_s), s	9.6	22.0	47.0	17.8	13.7	38.2
Cycle Q Clear(g_c), s	9.6	22.0	47.0	17.8	13.7	38.2
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	268	240	573	2566	1203	538
V/C Ratio(X)	0.48	1.19	1.11	0.42	0.37	0.84
Avail Cap(c_a), veh/h	268	240	573	2677	1314	588
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	56.4	61.7	49.2	8.0	36.2	44.3
Incr Delay (d2), s/veh	1.3	120.7	73.0	0.1	0.2	9.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	8.4	31.7	62.2	13.5	11.0	25.1
LnGrp Delay(d),s/veh	57.8	182.4	122.2	8.1	36.4	54.0
LnGrp LOS	57.0 E	F	F	Α	D	D
Approach Vol, veh/h	414			1729	893	
Approach Delay, s/veh	143.8			50.2	45.3	
Approach LOS	143.0 F			J0.2	45.5 D	
	'					
Timer	1	2	3	4	5	6
Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		114.4		31.0	56.0	58.4
Change Period (Y+Rc), s		9.0		9.0	9.0	9.0
Max Green Setting (Gmax), s		110.0		22.0	47.0	54.0
Max Q Clear Time (g_c+l1), s		19.8		24.0	49.0	40.2
Green Ext Time (p_c), s		19.8		0.0	0.0	9.2
Intersection Summary						
HCM 2010 Ctrl Delay			61.6			
HCM 2010 LOS			E			

	•	•	1	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	^	^	7
Traffic Volume (vph)	71	103	85	740	1021	161
Future Volume (vph)	71	103	85	740	1021	161
Turn Type	Prot	pm+ov	pm+pt	NA	NA	pm+ov
Protected Phases	4	5	5	2	6	4
Permitted Phases		4	2			6
Detector Phase	4	5	5	2	6	4
Switch Phase						
Minimum Initial (s)	7.0	4.0	4.0	10.0	10.0	7.0
Minimum Split (s)	12.5	10.0	10.0	16.0	16.0	12.5
Total Split (s)	40.0	25.0	25.0	80.0	55.0	40.0
Total Split (%)	33.3%	20.8%	20.8%	66.7%	45.8%	33.3%
Yellow Time (s)	3.2	4.3	4.3	4.3	4.3	3.2
All-Red Time (s)	2.3	1.7	1.7	1.7	1.7	2.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	6.0	6.0	6.0	6.0	5.5
Lead/Lag		Lead	Lead		Lag	
Lead-Lag Optimize?		Yes	Yes		Yes	
Recall Mode	None	None	None	Min	Min	None

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 61.3

Natural Cycle: 50

Control Type: Semi Act-Uncoord

	۶	•	•	†	+	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	^	^	7
Traffic Volume (veh/h)	71	103	85	740	1021	161
Future Volume (veh/h)	71	103	85	740	1021	161
Number	7	14	5	2	6	16
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00	U	U	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1900	1900	1863	1863	1900
	77	112	92	804	1110	175
Adj Flow Rate, veh/h			92			
Adj No. of Lanes	1	1		2	2	1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	0	0	0	2	2	0
Cap, veh/h	218	284	353	2369	1787	1010
Arrive On Green	0.12	0.12	0.06	0.67	0.50	0.50
Sat Flow, veh/h	1810	1615	1810	3632	3632	1615
Grp Volume(v), veh/h	77	112	92	804	1110	175
Grp Sat Flow(s),veh/h/ln	1810	1615	1810	1770	1770	1615
Q Serve(g_s), s	2.1	3.4	1.2	5.3	12.4	2.5
Cycle Q Clear(g_c), s	2.1	3.4	1.2	5.3	12.4	2.5
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	218	284	353	2369	1787	1010
V/C Ratio(X)	0.35	0.39	0.26	0.34	0.62	0.17
Avail Cap(c_a), veh/h	1140	1106	881	4782	3166	1640
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	22.1	20.0	7.1	3.9	9.8	4.3
Incr Delay (d2), s/veh	1.0	0.9	0.4	0.1	0.4	0.1
	0.0	0.9	0.4	0.1	0.4	0.0
Initial Q Delay(d3),s/veh						
%ile BackOfQ(95%),veh/ln	2.0	5.7	1.1	4.7	10.2	2.7
LnGrp Delay(d),s/veh	23.1	20.9	7.5	4.0	10.1	4.4
LnGrp LOS	С	С	A	A	В	A
Approach Vol, veh/h	189			896	1285	
Approach Delay, s/veh	21.8			4.3	9.4	
Approach LOS	С			Α	Α	
Timer	1	2	3	4	5	6
Assigned Phs	<u> </u>	2		4	5	6
		42.7				
Phs Duration (G+Y+Rc), s		42.7 * 6		12.1	9.0 * 6	33.7 * 6
Change Period (Y+Rc), s				5.5		
Max Green Setting (Gmax), s		* 74		34.5	* 19	* 49
Max Q Clear Time (g_c+I1), s		7.3		5.4	3.2	14.4
Green Ext Time (p_c), s		15.1		8.0	0.2	13.3
Intersection Summary						
HCM 2010 Ctrl Delay			8.4			
HCM 2010 LOS			A			
			А			
Notes						

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
	EDL	EDK	NDL			SDR
Lane Configurations	0		0	^ ^	↑ }	1
Traffic Vol, veh/h	0	4	0	818	1191	
Future Vol, veh/h	0	4	0	818	1191	1
Conflicting Peds, #/hr	0	0	0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	4	0	889	1295	1
Major/Minor	linor?	, and	Anior1		/oior?	
	linor2		Major1		/lajor2	
Conflicting Flow All	-	648	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	413	0	-	-	-
Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	_	413	_	_	_	_
Mov Cap-2 Maneuver	_	-	_	_	_	_
Stage 1	_	_	_	_	_	_
Stage 2	_	_	_	_	_	_
Olugo Z						
Approach	EB		NB		SB	
HCM Control Delay, s	13.8		0		0	
HCM LOS	В					
Mineral ann /Maria Ada a		NET	-DL 4	ODT	ODB	
Minor Lane/Major Mvmt			EBLn1	SBT	SBR	
Capacity (veh/h)		-		-	-	
HCM Lane V/C Ratio		-	0.011	-	-	
HCM Control Delay (s)		-		-	-	
HCM Lane LOS		-	В	-	-	
HCM 95th %tile Q(veh)		-	0	-	-	

ntersection								
nt Delay, s/veh	2.7							
•	EBL	EBR	NBL	NBT	SBT	SBR		
Movement	EDL Š							
Lane Configurations Fraffic Vol, veh/h	7 74	120	7 0	^	^	7 54		
future Vol, veh/h	74	130 130	79 79	752 752	1080 1080	54 54		
· · · · · · · · · · · · · · · · · · ·		0	0	152		0		
Conflicting Peds, #/hr Sign Control	Stop	Stop	Free	Free	0 Free	Free		
RT Channelized	Stop -	None	riee -	None		None		
Storage Length	0	250	560	None -	-	150		
eh in Median Storag		250	500	0	0	150		
Grade, %	0	<u>-</u>	_	0	0	_		
Peak Hour Factor	94	94	94	94	94	94		
leavy Vehicles, %	2	2	2	2	2	2		
Nymt Flow	79	138	84	800	1149	57		
AVIIILI IOW	13	130	04	000	11+3	JI		
	Minor2		//ajor1		Major2			
Conflicting Flow All	1717	574	1149	0	-	0		
Stage 1	1149	-	-	-	-	-		
Stage 2	568	-	-	-	-	-		
ritical Hdwy	6.84	6.94	4.14	-	-	-		
ritical Hdwy Stg 1	5.84	-	-	-	-	-		
Critical Hdwy Stg 2	5.84	-	-	-	-	-		
ollow-up Hdwy	3.52	3.32	2.22	-	-	-		
ot Cap-1 Maneuver	81	462	604	-	-	-		
Stage 1	264	-	-	-	-	-		
Stage 2	530	-	-	-	-	-		
Platoon blocked, %	70	100	004	-	-	-		
Nov Cap-1 Maneuver		462	604	-	-	-		
Nov Cap-2 Maneuver		-	-	-	-	-		
Stage 1	264	-	-	-	-	-		
Stage 2	456	-	-	-	-	-		
pproach	EB		NB		SB			
HCM Control Delay, s	24.4		1.1		0			
ICM LOS	С							
linor Lane/Major Mvr	mt	NBL	NRT	EBLn1 E	-Bl n2	SBT	SBR	
Capacity (veh/h)		604	-	182	462	- 100	- -	
ICM Lane V/C Ratio		0.139		0.433		_	-	
CM Control Delay (s	2)	11.9	-	39.1	16.1	-	-	
CM Lane LOS	7)	11.9 B		59.1 E	C	_	-	
ICM 95th %tile Q(vel	h)	0.5	-	2	1.2	-	<u>-</u>	
`	'')	0.0			1.2			
otes								
Volume exceeds ca	apacity	\$: De	lay exc	ceeds 30	00s	+: Comp	outation Not Defined	*: All major volume in platoon

APPENDIX F

CAPACITY ANALYSIS WORKSHEETS 2022 TOTAL TRAFFIC CONDITIONS

	۶	•	1	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	^	^	7
Traffic Volume (vph)	255	237	206	965	685	143
Future Volume (vph)	255	237	206	965	685	143
Turn Type	Prot	pm+ov	pm+pt	NA	NA	pm+ov
Protected Phases	4	5	5	2	6	4
Permitted Phases		4	2			6
Detector Phase	4	5	5	2	6	4
Switch Phase						
Minimum Initial (s)	7.0	4.0	4.0	10.0	10.0	7.0
Minimum Split (s)	12.5	10.0	10.0	16.0	16.0	12.5
Total Split (s)	43.0	30.0	30.0	77.0	47.0	43.0
Total Split (%)	35.8%	25.0%	25.0%	64.2%	39.2%	35.8%
Yellow Time (s)	3.2	4.3	4.3	4.3	4.3	3.2
All-Red Time (s)	2.3	1.7	1.7	1.7	1.7	2.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	6.0	6.0	6.0	6.0	5.5
Lead/Lag		Lead	Lead		Lag	
Lead-Lag Optimize?		Yes	Yes		Yes	
Recall Mode	None	None	None	Min	Min	None

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 69.1

Natural Cycle: 50

Control Type: Semi Act-Uncoord

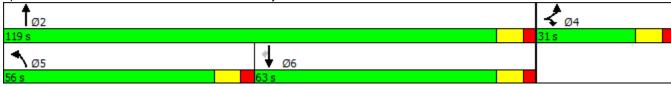
	•	`	•	†	Ţ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		EDK.	NDL			JDK 7
Traffic Volume (veh/h)	ሻ 255	237	1 206	↑↑ 965	↑↑ 685	143
Future Volume (veh/h)	255	237	206	965	685	143
Number	7	14	5	2	6	143
Initial Q (Qb), veh	0	0	0	0	0	0
. ,	1.00	1.00	1.00	U	U	1.00
Ped-Bike Adj(A_pbT)				1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1900	1900	1863	1863	1900
Adj Flow Rate, veh/h	271	252	219	1027	729	152
Adj No. of Lanes	1	1	1	2	2	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	0	0	0	2	2	0
Cap, veh/h	385	518	460	2095	1351	960
Arrive On Green	0.21	0.21	0.11	0.59	0.38	0.38
Sat Flow, veh/h	1810	1615	1810	3632	3632	1615
Grp Volume(v), veh/h	271	252	219	1027	729	152
Grp Sat Flow(s),veh/h/ln	1810	1615	1810	1770	1770	1615
Q Serve(g_s), s	8.2	7.4	3.9	9.8	9.4	2.5
Cycle Q Clear(g_c), s	8.2	7.4	3.9	9.8	9.4	2.5
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	385	518	460	2095	1351	960
V/C Ratio(X)	0.70	0.49	0.48	0.49	0.54	0.16
Avail Cap(c_a), veh/h	1154	1204	1002	4272	2467	1469
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	21.4	16.1	9.3	6.9	14.2	5.3
Incr Delay (d2), s/veh	2.4	0.7	0.8	0.3	0.3	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.2	0.0	0.0
• ,	7.7	11.3	3.6	8.3	8.1	3.1
%ile BackOfQ(95%),veh/ln						
LnGrp Delay(d),s/veh	23.8	16.8	10.0	7.1	14.5	5.4
LnGrp LOS	C	В	В	A	B	A
Approach Vol, veh/h	523			1246	881	
Approach Delay, s/veh	20.4			7.6	12.9	
Approach LOS	С			Α	В	
Timer	1	2	3	4	5	6
Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		40.8		18.0	12.4	28.5
Change Period (Y+Rc), s		* 6		5.5	* 6	* 6
Max Green Setting (Gmax), s		* 71		37.5	* 24	* 41
Max Q Clear Time (g_c+l1), s		11.8		10.2	5.9	11.4
Green Ext Time (p_c), s		12.7		2.3	0.7	11.4
		12.7		2.3	0.7	11.0
Intersection Summary						
HCM 2010 Ctrl Delay			11.9			
HCM 2010 LOS			В			
Notes						

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
						אמט
Lane Configurations	\	آآ 11	*	↑↑ 1257	↑ ↑ 844	15
Traffic Vol, veh/h Future Vol, veh/h	0	11	0	1257	844	15
			0			
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	0	100	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	12	0	1366	917	16
NA = : = =/NA:== =	Min C		1-1-1		1-1- C	
	Minor2		Major1		Major2	
Conflicting Flow All	1609	467	934	0	-	0
Stage 1	926	-	-	-	-	-
Stage 2	683	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	95	542	729	-	-	-
Stage 1	346	_	_	_	-	-
Stage 2	463	-	-	-	-	-
Platoon blocked, %	,,,,			_	_	_
Mov Cap-1 Maneuver	95	542	729	_	_	_
Mov Cap-1 Maneuver	223	J 1 Z	123			
Stage 1	346	-	-	<u>-</u>	-	_
	463	-	-	-	-	-
Stage 2	403	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	11.8		0		0	
HCM LOS	В					
Minor Lane/Major Mvn	ot	NBL	NDT	EBLn1 E	ERI n2	SBT
	TI.					ODI
Capacity (veh/h)		729	-	-	· · · -	-
HCM Lane V/C Ratio		-	-		0.022	-
HCM Control Delay (s))	0	-	0	11.8	-
HCM Lane LOS		Α	-	Α	В	-
HCM 95th %tile Q(veh)	0	-	-	0.1	-

3: Columbia Pk & Declaration Way

	•	•	1	†	Ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	^	^	7
Traffic Volume (vph)	113	252	562	1079	499	397
Future Volume (vph)	113	252	562	1079	499	397
Turn Type	Prot	Prot	Prot	NA	NA	Perm
Protected Phases	4	4	5	2	6	
Permitted Phases						6
Detector Phase	4	4	5	2	6	6
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	28.0	28.0	15.0	28.0	28.0	28.0
Total Split (s)	31.0	31.0	56.0	119.0	63.0	63.0
Total Split (%)	20.7%	20.7%	37.3%	79.3%	42.0%	42.0%
Yellow Time (s)	6.0	6.0	6.0	6.0	6.0	6.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	9.0	9.0	9.0	9.0	9.0	9.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Recall Mode	None	None	None	None	None	None

Intersection Summary


Cycle Length: 150

Actuated Cycle Length: 141.7

Natural Cycle: 140

Control Type: Actuated-Uncoordinated

	•	•	•	†		✓
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7	ሻ	^	^	7
Traffic Volume (veh/h)	113	252	562	1079	499	397
Future Volume (veh/h)	113	252	562	1079	499	397
Number	7	14	5	2	6	16
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863
Adj Flow Rate, veh/h	128	286	639	1226	567	451
Adj No. of Lanes	1	1	1	2	2	1
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	267	238	569	2572	1219	545
Arrive On Green	0.15	0.15	0.32	0.73	0.34	0.34
Sat Flow, veh/h	1774	1583	1774	3632	3632	1583
Grp Volume(v), veh/h	128	286	639	1226	567	451
Grp Sat Flow(s),veh/h/ln	1774	1583	1774	1770	1770	1583
Q Serve(g_s), s	9.7	22.0	47.0	21.2	18.3	38.2
Cycle Q Clear(g_c), s	9.7	22.0	47.0	21.2	18.3	38.2
Prop In Lane	1.00	1.00	1.00		1010	1.00
Lane Grp Cap(c), veh/h	267	238	569	2572	1219	545
V/C Ratio(X)	0.48	1.20	1.12	0.48	0.47	0.83
Avail Cap(c_a), veh/h	267	238	569	2659	1305	584
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	57.0	62.2	49.7	8.4	37.5	44.0
Incr Delay (d2), s/veh	1.3	124.0	76.0	0.1	0.3	9.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	8.5	32.0	62.9	15.5	14.0	25.0
LnGrp Delay(d),s/veh	58.3	186.2	125.7	8.5	37.8	53.1
LnGrp LOS	E	F	F	Α	D	D
Approach Vol, veh/h	414			1865	1018	
Approach Delay, s/veh	146.7			48.7	44.5	
Approach LOS	F			40.7 D	44.5 D	
Approach LOS	Г			D	D	
Timer	1	2	3	4	5	6
Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		115.4		31.0	56.0	59.4
Change Period (Y+Rc), s		9.0		9.0	9.0	9.0
Max Green Setting (Gmax), s		110.0		22.0	47.0	54.0
Max Q Clear Time (g_c+l1), s		23.2		24.0	49.0	40.2
Green Ext Time (p_c), s		26.2		0.0	0.0	10.2
Intersection Summary		-				
			50.7			
HCM 2010 Ctrl Delay			59.7			
HCM 2010 LOS			Е			

	•	•	1	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	^	^	7
Traffic Volume (vph)	215	233	221	740	1035	283
Future Volume (vph)	215	233	221	740	1035	283
Turn Type	Prot	pm+ov	pm+pt	NA	NA	pm+ov
Protected Phases	4	5	5	2	6	4
Permitted Phases		4	2			6
Detector Phase	4	5	5	2	6	4
Switch Phase						
Minimum Initial (s)	7.0	4.0	4.0	10.0	10.0	7.0
Minimum Split (s)	12.5	10.0	10.0	16.0	16.0	12.5
Total Split (s)	40.0	25.0	25.0	80.0	55.0	40.0
Total Split (%)	33.3%	20.8%	20.8%	66.7%	45.8%	33.3%
Yellow Time (s)	3.2	4.3	4.3	4.3	4.3	3.2
All-Red Time (s)	2.3	1.7	1.7	1.7	1.7	2.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	6.0	6.0	6.0	6.0	5.5
Lead/Lag		Lead	Lead		Lag	
Lead-Lag Optimize?		Yes	Yes		Yes	
Recall Mode	None	None	None	Min	Min	None

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 85.2

Natural Cycle: 60

Control Type: Semi Act-Uncoord

	•	•	•	†		4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u> </u>	7	ሻ	^	^	7
Traffic Volume (veh/h)	215	233	221	740	1035	283
Future Volume (veh/h)	215	233	221	740	1035	283
Number	7	14	5	2	6	16
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1900	1900	1863	1863	1900
Adj Flow Rate, veh/h	234	253	240	804	1125	308
Adj No. of Lanes	1	200	1	2	2	300
•						0.92
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	0	0	0	2	2	0
Cap, veh/h	343	466	362	2298	1653	1060
Arrive On Green	0.19	0.19	0.10	0.65	0.47	0.47
Sat Flow, veh/h	1810	1615	1810	3632	3632	1615
Grp Volume(v), veh/h	234	253	240	804	1125	308
Grp Sat Flow(s),veh/h/ln	1810	1615	1810	1770	1770	1615
Q Serve(g_s), s	8.6	9.5	4.4	7.4	17.8	5.8
Cycle Q Clear(g_c), s	8.6	9.5	4.4	7.4	17.8	5.8
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	343	466	362	2298	1653	1060
V/C Ratio(X)	0.68	0.54	0.66	0.35	0.68	0.29
Avail Cap(c_a), veh/h	873	939	665	3664	2426	1413
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	27.0	21.5	12.9	5.7	14.9	5.2
• ()	27.0	1.0	2.1	0.1	0.5	0.2
Incr Delay (d2), s/veh						
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	8.0	13.5	4.6	6.5	13.5	7.2
LnGrp Delay(d),s/veh	29.3	22.5	15.0	5.8	15.4	5.4
LnGrp LOS	С	С	В	A	В	A
Approach Vol, veh/h	487			1044	1433	
Approach Delay, s/veh	25.8			7.9	13.2	
Approach LOS	С			Α	В	
Timer	1	2	3	4	5	6
		2	3			
Assigned Phs				4	5	6
Phs Duration (G+Y+Rc), s		52.4		19.1	13.0	39.4
Change Period (Y+Rc), s		* 6		5.5	* 6	* 6
Max Green Setting (Gmax), s		* 74		34.5	* 19	* 49
Max Q Clear Time (g_c+l1), s		9.4		11.5	6.4	19.8
Green Ext Time (p_c), s		17.0		2.1	0.7	13.6
Intersection Summary						
HCM 2010 Ctrl Delay			13.4			
HCM 2010 LOS			13.4 B			
1101VI 2010 LOS			D			
Notes						

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
	CDL Š	EDK	NDL			אמט
Lane Configurations				↑↑ 962	↑ ↑	15
Traffic Vol, veh/h	0	18 18	0	962	1313	15
Future Vol, veh/h	0		0		1313	
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	100	-	-	-
Veh in Median Storag		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	20	0	1046	1427	16
Major/Minor	Minor2		Major1		Majara	
					Major2	
Conflicting Flow All	1958		1443	0	-	0
Stage 1	1435	-	-	-	-	-
Stage 2	523	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	56	369	466	-	-	-
Stage 1	186	-	-	-	-	-
Stage 2	559	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	56	369	466	-	-	_
Mov Cap-2 Maneuver		-	-	_	_	-
Stage 1	186	_	_	_	_	_
Stage 2	559	_	_	_	_	_
Olago Z	000					
Approach	EB		NB		SB	
HCM Control Delay, s	15.3		0		0	
HCM LOS	С					
Minor Long/Major My	mt	NDI	NDT	EDI 51 [EDI no	CDT
Minor Lane/Major Mvi	IIL	NBL	INDI	EBLn1 [SBT
Capacity (veh/h)		466	-	-	369	-
HCM Lane V/C Ratio	,	-	-		0.053	-
HCM Control Delay (s	5)	0	-	0	15.3	-
HCM Lane LOS		Α	-	Α	С	-
HCM 95th %tile Q(vel	1)	0	-	-	0.2	-

Intersection								
Int Delay, s/veh	3.2							
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	T T	T T	inde j	†	↑ ↑			
Traffic Vol, veh/h	74	130	79	888	1224			
Future Vol, veh/h	74	130	79	888	1224	54		
Conflicting Peds, #/hr		0	0	0	0			
Sign Control	Stop	Stop	Free	Free	Free			
RT Channelized	- -	None	-	None	-			
Storage Length	0	250	560	-	_	4-0		
Veh in Median Storage		-	-	0	0			
Grade, %	0, "	_	_	0	0			
Peak Hour Factor	92	92	92	92	92			
Heavy Vehicles, %	2	2	2	2	2			
Mymt Flow	80	141	86	965	1330			
			30		. 555	30		
NA . (NA:	N. 0							
	Minor2		Major1		Major2			
Conflicting Flow All	1984	665	1330	0	-			
Stage 1	1330	-	-	-	-	-		
Stage 2	654	-	-	-	-	-		
Critical Hdwy	6.84	6.94	4.14	-	-	-		
Critical Hdwy Stg 1	5.84	-	-	-	-	-		
Critical Hdwy Stg 2	5.84	2.00	-	-	-	-		
Follow-up Hdwy	3.52	3.32	2.22	-	-	-		
Pot Cap-1 Maneuver	~ 53	403	515	-	-	-		
Stage 1	211 479	-	-	-	-	-		
Stage 2	4/9	-	-	-	-	-		
Platoon blocked, %	~ 44	402	515	-	-	-		
Mov Cap-1 Maneuver		403	010	-	-	-		
Mov Cap-2 Maneuver Stage 1	211	-	-	_	-	-		
Stage 1 Stage 2	399	-	-	-	-	-		
Slaye 2	399	-	-	-	-	<u>-</u>		
Approach	EB		NB		SB			
HCM Control Delay, s	32.9		1.1		0			
HCM LOS	D							
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1 E	EBLn2	SBT	SBR	
Capacity (veh/h)		515	-		403		-	
HCM Lane V/C Ratio		0.167	_	0.559		_	-	
HCM Control Delay (s	s)	13.4	-		18.7		-	
HCM Lane LOS	,	В	-	F	C		-	
HCM 95th %tile Q(veh	1)	0.6	_	2.8	1.5		-	
`	,							
Notes		<u> </u>						* **
~: Volume exceeds ca	apacity	\$: De	elay exc	ceeds 3	00s	+: Com	putation Not Defined	*: All major volume in platoon

APPENDIX G

CAPACITY ANALYSIS WORKSHEETS 2027 BACKGROUND CONDITIONS

	•	•	1	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	7	ሻ	^	^	7
Traffic Volume (vph)	145	138	86	1092	763	35
Future Volume (vph)	145	138	86	1092	763	35
Turn Type	Prot	pm+ov	pm+pt	NA	NA	pm+ov
Protected Phases	4	5	5	2	6	4
Permitted Phases		4	2			6
Detector Phase	4	5	5	2	6	4
Switch Phase						
Minimum Initial (s)	7.0	4.0	4.0	10.0	10.0	7.0
Minimum Split (s)	12.5	10.0	10.0	16.0	16.0	12.5
Total Split (s)	43.0	30.0	30.0	77.0	47.0	43.0
Total Split (%)	35.8%	25.0%	25.0%	64.2%	39.2%	35.8%
Yellow Time (s)	3.2	4.3	4.3	4.3	4.3	3.2
All-Red Time (s)	2.3	1.7	1.7	1.7	1.7	2.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	6.0	6.0	6.0	6.0	5.5
Lead/Lag		Lead	Lead		Lag	
Lead-Lag Optimize?		Yes	Yes		Yes	
Recall Mode	None	None	None	Min	Min	None

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 56.3

Natural Cycle: 45

Control Type: Semi Act-Uncoord

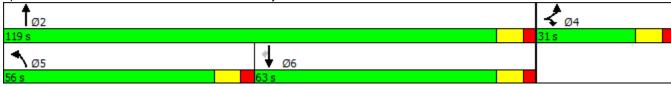
	•		•	†	1	1
Marranat		T)	l No=	▼	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	115	7	\	^	^	7
Traffic Volume (veh/h)	145	138	86	1092	763	35
Future Volume (veh/h)	145	138	86	1092	763	35
Number	7	14	5	2	6	16
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1900	1900	1863	1863	1900
Adj Flow Rate, veh/h	154	147	91	1162	812	37
Adj No. of Lanes	1	1	1	2	2	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	0	0	0	2	2	0
Cap, veh/h	260	324	436	2218	1590	957
Arrive On Green	0.14	0.14	0.06	0.63	0.45	0.45
Sat Flow, veh/h	1810	1615	1810	3632	3632	1615
Grp Volume(v), veh/h	154	147	91	1162	812	37
Grp Sat Flow(s), veh/h/ln	1810	1615	1810	1770	1770	1615
Q Serve(g_s), s	4.0	4.0	1.2	9.1	8.2	0.5
Cycle Q Clear(g_c), s	4.0	4.0	1.2	9.1	8.2	0.5
Prop In Lane	1.00	1.00	1.00	J. I	0.2	1.00
Lane Grp Cap(c), veh/h	260	324	436	2218	1590	957
	0.59	0.45	0.21	0.52	0.51	0.04
V/C Ratio(X)						
Avail Cap(c_a), veh/h	1357	1304	1200	5025	2902	1556
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	20.1	17.6	6.6	5.2	9.8	4.2
Incr Delay (d2), s/veh	2.2	1.0	0.2	0.2	0.3	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	3.8	0.2	1.1	7.9	7.2	0.5
LnGrp Delay(d),s/veh	22.2	18.6	6.9	5.4	10.1	4.3
LnGrp LOS	С	В	Α	Α	В	Α
Approach Vol, veh/h	301			1253	849	
Approach Delay, s/veh	20.4			5.5	9.8	
Approach LOS	С			Α	Α	
	4	0	2			
Timer	1	2	3	4	5	6
Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		37.3		12.7	8.9	28.5
Change Period (Y+Rc), s		* 6		5.5	* 6	* 6
Max Green Setting (Gmax), s		* 71		37.5	* 24	* 41
Max Q Clear Time (g_c+l1), s		11.1		6.0	3.2	10.2
Green Ext Time (p_c), s		14.3		1.3	0.2	12.3
Intersection Summary						
			0.0			
HCM 2010 Ctrl Delay			8.9			
HCM 2010 LOS			Α			
Notes						

Intersection							
Int Delay, s/veh	0						
•							
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		- 7		^	∱ ∱		
Traffic Vol, veh/h	0	0	0	1330	853	3	
Future Vol, veh/h	0	0	0	1330	853	3	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	0	100	-	_	-	
Veh in Median Storage	e, # 1	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	0	0	1446	927	3	
		-					
	Minor2		//ajor1		Major2		
Conflicting Flow All	1652	465	930	0	-	0	
Stage 1	929	-	-	-	-	-	
Stage 2	723	-	-	-	-	-	
Critical Hdwy	6.84	6.94	4.14	-	-	-	
Critical Hdwy Stg 1	5.84	-	-	-	-	-	
Critical Hdwy Stg 2	5.84	-	-	-	-	-	
Follow-up Hdwy	3.52	3.32	2.22	-	_	-	
Pot Cap-1 Maneuver	89	544	731	-	-	-	
Stage 1	345	-	-	-	-	-	
Stage 2	441	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	89	544	731	-	-	-	
Mov Cap-2 Maneuver	217	-	_	_	_	-	
Stage 1	345	_	_	_	_	_	
Stage 2	441	<u>-</u>	_	_	_	_	
Olugo Z	771		_				
Approach	EB		NB		SB		
HCM Control Delay, s	0		0		0		
HCM LOS	Α						
Minor Lane/Major Mvm	nt	NBL	NRT	EBLn1 E	-RI n2	SBT	Į
	ı		NOT			וטט	
Capacity (veh/h)		731	-	-	-	-	
HCM Cantral Dalay (a)		-	-	-	-	-	
HCM Control Delay (s)		0 A	-	0	0	-	
		Δ	_	Α	Α	-	
HCM Lane LOS HCM 95th %tile Q(veh	,	0	_	-	-	_	

3: Columbia Pk & Declaration Way

	•	•	1	†	ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	7	7	^	† †	7
Traffic Volume (vph)	113	252	562	1085	440	397
Future Volume (vph)	113	252	562	1085	440	397
Turn Type	Prot	Prot	Prot	NA	NA	Perm
Protected Phases	4	4	5	2	6	
Permitted Phases						6
Detector Phase	4	4	5	2	6	6
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	28.0	28.0	15.0	28.0	28.0	28.0
Total Split (s)	31.0	31.0	56.0	119.0	63.0	63.0
Total Split (%)	20.7%	20.7%	37.3%	79.3%	42.0%	42.0%
Yellow Time (s)	6.0	6.0	6.0	6.0	6.0	6.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	9.0	9.0	9.0	9.0	9.0	9.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Recall Mode	None	None	None	None	None	None

Intersection Summary


Cycle Length: 150

Actuated Cycle Length: 141.7

Natural Cycle: 140

Control Type: Actuated-Uncoordinated

	•	•	1	†		✓
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ች	7	ሻ	^	^	7
Traffic Volume (veh/h)	113	252	562	1085	440	397
Future Volume (veh/h)	113	252	562	1085	440	397
Number	7	14	5	2	6	16
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863
Adj Flow Rate, veh/h	128	286	639	1233	500	451
Adj No. of Lanes	1	1	1	2	2	1
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	267	238	570	2571	1216	544
Arrive On Green	0.15	0.15	0.32	0.73	0.34	0.34
Sat Flow, veh/h	1774	1583	1774	3632	3632	1583
Grp Volume(v), veh/h	128	286	639	1233	500	451
Grp Sat Flow(s),veh/h/ln	1774	1583	1774	1770	1770	1583
Q Serve(g_s), s	9.7	22.0	47.0	21.4	15.8	38.2
Cycle Q Clear(g_c), s	9.7	22.0	47.0	21.4	15.8	38.2
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	267	238	570	2571	1216	544
V/C Ratio(X)	0.48	1.20	1.12	0.48	0.41	0.83
Avail Cap(c_a), veh/h	267	238	570	2662	1307	585
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	56.9	62.1	49.6	8.4	36.7	44.1
Incr Delay (d2), s/veh	1.3	123.4	75.4	0.1	0.2	9.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	8.4	32.0	62.8	15.6	12.3	25.0
LnGrp Delay(d),s/veh	58.2	185.5	125.0	8.5	36.9	53.3
LnGrp LOS	E	F	F	A	D	D
Approach Vol, veh/h	414			1872	951	
Approach Delay, s/veh	146.1			48.3	44.7	
Approach LOS	F			40.3 D	44.7 D	
Approach LOS				D	D	
Timer	1	2	3	4	5	6
Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		115.2		31.0	56.0	59.2
Change Period (Y+Rc), s		9.0		9.0	9.0	9.0
Max Green Setting (Gmax), s		110.0		22.0	47.0	54.0
Max Q Clear Time (g_c+l1), s		23.4		24.0	49.0	40.2
Green Ext Time (p_c), s		24.8		0.0	0.0	10.0
Intersection Summary						
			50.7			
HCM 2010 Ctrl Delay HCM 2010 LOS			59.7 E			

	•	•	1	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	^	^	7
Traffic Volume (vph)	71	103	85	837	1155	161
Future Volume (vph)	71	103	85	837	1155	161
Turn Type	Prot	pm+ov	pm+pt	NA	NA	pm+ov
Protected Phases	4	5	5	2	6	4
Permitted Phases		4	2			6
Detector Phase	4	5	5	2	6	4
Switch Phase						
Minimum Initial (s)	7.0	4.0	4.0	10.0	10.0	7.0
Minimum Split (s)	12.5	10.0	10.0	16.0	16.0	12.5
Total Split (s)	40.0	25.0	25.0	80.0	55.0	40.0
Total Split (%)	33.3%	20.8%	20.8%	66.7%	45.8%	33.3%
Yellow Time (s)	3.2	4.3	4.3	4.3	4.3	3.2
All-Red Time (s)	2.3	1.7	1.7	1.7	1.7	2.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	6.0	6.0	6.0	6.0	5.5
Lead/Lag		Lead	Lead		Lag	
Lead-Lag Optimize?		Yes	Yes		Yes	
Recall Mode	None	None	None	Min	Min	None

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 66.7

Natural Cycle: 55

Control Type: Semi Act-Uncoord

	•	`	•	†	Ţ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	LDI\	NDL 1	↑ ↑	↑ ↑	7
Traffic Volume (veh/h)	71	103	85	837	1155	161
Future Volume (veh/h)	71	103	85	837	1155	161
Number	7	14	5	2	6	16
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00	U	U	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1900	1900	1863	1863	1900
Adj Flow Rate, veh/h	77	112	92	910	1255	175
-	1	1	1	2	1200	1/5
Adj No. of Lanes		0.92			0.92	0.92
Peak Hour Factor	0.92		0.92	0.92		
Percent Heavy Veh, %	0	0	0	2	2	1056
Cap, veh/h	203	266	326	2459	1918	1056
Arrive On Green	0.11	0.11	0.05	0.69	0.54	0.54
Sat Flow, veh/h	1810	1615	1810	3632	3632	1615
Grp Volume(v), veh/h	77	112	92	910	1255	175
Grp Sat Flow(s),veh/h/ln	1810	1615	1810	1770	1770	1615
Q Serve(g_s), s	2.4	3.7	1.2	6.3	15.0	2.5
Cycle Q Clear(g_c), s	2.4	3.7	1.2	6.3	15.0	2.5
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	203	266	326	2459	1918	1056
V/C Ratio(X)	0.38	0.42	0.28	0.37	0.65	0.17
Avail Cap(c_a), veh/h	1047	1019	808	4392	2908	1508
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	24.5	22.4	7.6	3.7	9.7	4.0
Incr Delay (d2), s/veh	1.2	1.1	0.5	0.1	0.4	0.1
	0.0	0.0	0.0	0.1	0.4	0.1
Initial Q Delay(d3),s/veh						
%ile BackOfQ(95%),veh/ln	2.2	6.2	1.1	5.5	11.7	2.7
LnGrp Delay(d),s/veh	25.7	23.4	8.0	3.8	10.1	4.1
LnGrp LOS	С	С	A	Α	В	A
Approach Vol, veh/h	189			1002	1430	
Approach Delay, s/veh	24.3			4.2	9.3	
Approach LOS	С			Α	Α	
Timer	1	2	3	4	5	6
		2	J			6
Assigned Phs Physical (C. V. Pa)				4	5	
Phs Duration (G+Y+Rc), s		47.4		12.2	9.1	38.3
Change Period (Y+Rc), s		* 6		5.5	* 6	* 6
Max Green Setting (Gmax), s		* 74		34.5	* 19	* 49
Max Q Clear Time (g_c+I1), s		8.3		5.7	3.2	17.0
Green Ext Time (p_c), s		19.0		8.0	0.2	15.3
Intersection Summary						
HCM 2010 Ctrl Delay			8.5			
HCM 2010 LOS			Α			
Notes						
10.00						

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	LDL	T T	NDL	↑ ↑	↑	ODIN
Traffic Vol, veh/h	0	-	0	TT 925	1348	1
•				925	1348	
Future Vol, veh/h	0	4	0			1
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	4	0	1005	1465	1
		•				•
	linor2		Major1	N	/lajor2	
Conflicting Flow All	-	733	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	_	-	_	-	_
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	3.32	_	_	_	_
Pot Cap-1 Maneuver	0	363	0	_	_	_
	0		0	-		
Stage 1	-	-		-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	-	363	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
A			NE		0.0	
Approach	EB		NB		SB	
HCM Control Delay, s	15		0		0	
HCM LOS	С					
Minor Long/Major Maret		NDT	EDI 51	CDT	CDD	
Minor Lane/Major Mvmt		NBT E		SBT	SBR	
Capacity (veh/h)		-	363	-	-	
HCM Lane V/C Ratio		-	0.012	-	-	
HCM Control Delay (s)		-	15	-	-	
HCM Lane LOS			С	-	-	
HCM 95th %tile Q(veh)		-	0	-	-	
, ,						

Intersection								
Int Delay, s/veh	3							
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
	EDL Š	EDR						
Lane Configurations Traffic Vol, veh/h	1 74	130	7 9	↑↑ 850	↑↑ 1221	r 54		
Future Vol, veh/h	74	130	79	850	1221	54 54		
Conflicting Peds, #/hr	0	0	0	000	0			
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	- -	None	-	None	-			
Storage Length	0	250	560	-	_	4-0		
Veh in Median Storage		-	-	0	0	-		
Grade, %	0	_	_	0	0	_		
Peak Hour Factor	94	94	94	94	94	94		
Heavy Vehicles, %	2	2	2	2	2			
Mvmt Flow	79	138	84	904	1299	57		
Majay/Minay	Minor		1-:1		4-:0			
	Minor2		Major1		Major2			
Conflicting Flow All	1919	649	1299	0	-	0		
Stage 1 Stage 2	1299 620	-	-	-	-	-		
Critical Hdwy	6.84	6.94	4.14	_	-	-		
Critical Hdwy Stg 1	5.84	0.94	4.14	-	-	-		
Critical Hdwy Stg 2	5.84	-	-	-	-	-		
Follow-up Hdwy	3.52	3.32	2.22	_	_	_		
Pot Cap-1 Maneuver	~ 59	412	529	_	_			
Stage 1	220	- 12	-	_	_	_		
Stage 2	499	_	_	-	_	_		
Platoon blocked, %	100			_	_	-		
Mov Cap-1 Maneuver	~ 50	412	529	-	-	-		
Mov Cap-2 Maneuver		-	-	_	-	-		
Stage 1	220	-	-	-	-	-		
Stage 2	420	-	-	-	-	-		
Approach	EB		NB		SB			
			1.1		0			
HCM Control Delay, s HCM LOS	30.3 D		1.1		U			
I IOIVI LOS	U							
Minor Lane/Major Mvn	nt	NBL		EBLn1 E		SBT	SBR	
Capacity (veh/h)		529	-	.02	412	-	-	
HCM Lane V/C Ratio		0.159		0.518		-	-	
HCM Control Delay (s))	13.1	-		18.1	-	-	
HCM Lane LOS	,	В	-	F	C		-	
HCM 95th %tile Q(veh	1)	0.6	-	2.5	1.5	-	-	
Notes								
~: Volume exceeds ca	pacity	\$: De	lay exc	ceeds 30	00s	+: Com	putation Not Defined	*: All major volume in platoon

APPENDIX H

CAPACITY ANALYSIS WORKSHEETS 2027 TOTAL TRAFFIC CONDITIONS

	•	•	1	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	^	^	7
Traffic Volume (vph)	311	270	273	1092	780	222
Future Volume (vph)	311	270	273	1092	780	222
Turn Type	Prot	pm+ov	pm+pt	NA	NA	pm+ov
Protected Phases	4	5	5	2	6	4
Permitted Phases		4	2			6
Detector Phase	4	5	5	2	6	4
Switch Phase						
Minimum Initial (s)	7.0	4.0	4.0	10.0	10.0	7.0
Minimum Split (s)	12.5	10.0	10.0	16.0	16.0	12.5
Total Split (s)	43.0	30.0	30.0	77.0	47.0	43.0
Total Split (%)	35.8%	25.0%	25.0%	64.2%	39.2%	35.8%
Yellow Time (s)	3.2	4.3	4.3	4.3	4.3	3.2
All-Red Time (s)	2.3	1.7	1.7	1.7	1.7	2.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	6.0	6.0	6.0	6.0	5.5
Lead/Lag		Lead	Lead		Lag	
Lead-Lag Optimize?		Yes	Yes		Yes	
Recall Mode	None	None	None	Min	Min	None

Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 84 Natural Cycle: 60

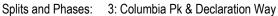
Control Type: Semi Act-Uncoord

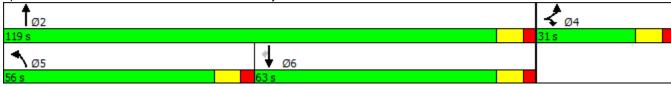
	ᄼ	*	1	Ť	¥	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u> </u>	7	*	† †	† †	7
Traffic Volume (veh/h)	311	270	273	1092	780	222
Future Volume (veh/h)	311	270	273	1092	780	222
Number	7	14	5	2	6	16
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1900	1900	1863	1863	1900
Adj Flow Rate, veh/h	331	287	290	1162	830	236
Adj No. of Lanes	1	1	290	2	2	230
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	0	0	0	2	2	0
Cap, veh/h	429	588	441	2133	1388	1017
Arrive On Green	0.24	0.24	0.13	0.60	0.39	0.39
Sat Flow, veh/h	1810	1615	1810	3632	3632	1615
Grp Volume(v), veh/h	331	287	290	1162	830	236
Grp Sat Flow(s),veh/h/ln	1810	1615	1810	1770	1770	1615
Q Serve(g_s), s	12.3	9.9	6.2	13.9	13.4	4.6
Cycle Q Clear(g_c), s	12.3	9.9	6.2	13.9	13.4	4.6
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	429	588	441	2133	1388	1017
V/C Ratio(X)	0.77	0.49	0.66	0.54	0.60	0.23
Avail Cap(c_a), veh/h	945	1048	816	3499	2020	1305
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	25.6	17.7	12.3	8.4	17.3	5.8
Incr Delay (d2), s/veh	3.0	0.6	1.7	0.4	0.4	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.2	0.0	0.0
%ile BackOfQ(95%),veh/ln	10.6	14.4	5.7	11.1	10.7	6.1
	28.5	18.3	14.0	8.7	17.7	5.9
LnGrp Delay(d),s/veh						
LnGrp LOS	C	В	В	A 450	B	A
Approach Vol, veh/h	618			1452	1066	
Approach Delay, s/veh	23.8			9.7	15.1	
Approach LOS	С			Α	В	
Timer	1	2	3	4	5	6
Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		49.3		22.5	15.1	34.2
Change Period (Y+Rc), s		* 6		5.5	* 6	* 6
Max Green Setting (Gmax), s		* 71		37.5	* 24	* 41
		15.9		14.3	8.2	15.4
Max Q Clear Time (g_c+l1), s						
Green Ext Time (p_c), s		16.6		2.8	0.9	12.8
Intersection Summary						
HCM 2010 Ctrl Delay			14.3			
HCM 2010 LOS			В			
Notes						
NUCES						

Intersection						
Int Delay, s/veh	0.1					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u>`</u>	7	7	^	†	0.4
Traffic Vol, veh/h	0	17	0	1496	1040	24
Future Vol, veh/h	0	17	0	1496	1040	24
Conflicting Peds, #/hr		0	0	0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	0	100	-	-	-
Veh in Median Storag		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	18	0	1626	1130	26
N.A ' /N.A.'	N4' C		1.1.1		4.1.0	
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	1956	578	1157	0	-	0
Stage 1	1143	-	-	-	-	-
Stage 2	813	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	56	459	600	-	-	-
Stage 1	266	-	_	_	-	_
Stage 2	396	-	-	-	-	-
Platoon blocked, %	303			_	_	_
Mov Cap-1 Maneuver	56	459	600	_	_	_
Mov Cap-1 Maneuver		-	-			_
Stage 1	266	-	<u>-</u>	<u>-</u>	-	<u>-</u>
•	396	-	-	-	-	-
Stage 2	390	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			0		0	
HCM LOS	В					
Minor Long/Major May	mt	NDI	NDT	EDI p4 F	EDI po	CDT
Minor Lane/Major Mvi	III	NBL	MRI	EBLn1 E		SBT
Capacity (veh/h)		600	-	-	459	-
HCM Lane V/C Ratio		-	-	-	0.04	-
HCM Control Delay (s	5)	0	-	0	13.2	-
HCM Lane LOS		Α	-	Α	В	-
HCM 95th %tile Q(vel	1)	0	-	-	0.1	-

3: Columbia Pk & Declaration Way

	•	•	1	†	ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ň	7	ሻ	^	† †	7
Traffic Volume (vph)	113	269	583	1272	589	397
Future Volume (vph)	113	269	583	1272	589	397
Turn Type	Prot	Prot	Prot	NA	NA	Perm
Protected Phases	4	4	5	2	6	
Permitted Phases						6
Detector Phase	4	4	5	2	6	6
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	28.0	28.0	15.0	28.0	28.0	28.0
Total Split (s)	31.0	31.0	56.0	119.0	63.0	63.0
Total Split (%)	20.7%	20.7%	37.3%	79.3%	42.0%	42.0%
Yellow Time (s)	6.0	6.0	6.0	6.0	6.0	6.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	9.0	9.0	9.0	9.0	9.0	9.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Recall Mode	None	None	None	None	None	None


Intersection Summary


Cycle Length: 150

Actuated Cycle Length: 142.3

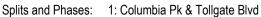
Natural Cycle: 140

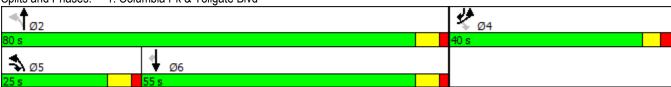
Control Type: Actuated-Uncoordinated

_		`	•	†	Ţ	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	T T	₹	NDL	↑ ↑	↑ ↑	JDK 7
Traffic Volume (veh/h)	113	269	583	1272	589	397
Future Volume (veh/h)	113	269	583	1272	589	397
Number	7	14	5	2	6	16
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00		•	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863
Adj Flow Rate, veh/h	128	306	662	1445	669	451
Adj No. of Lanes	1	1	1	2	2	1
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	265	236	565	2579	1236	553
Arrive On Green	0.15	0.15	0.32	0.73	0.35	0.35
Sat Flow, veh/h	1774	1583	1774	3632	3632	1583
Grp Volume(v), veh/h	128	306	662	1445	669	451
Grp Sat Flow(s), veh/h/ln	1774	1583	1774	1770	1770	1583
	9.8	22.0	47.0	27.6	22.4	38.2
Q Serve(g_s), s						38.2
Cycle Q Clear(g_c), s	9.8	22.0	47.0	27.6	22.4	
Prop In Lane	1.00 265	1.00 236	1.00 565	2579	1236	1.00 553
Lane Grp Cap(c), veh/h						
V/C Ratio(X)	0.48	1.30	1.17	0.56	0.54	0.82
Avail Cap(c_a), veh/h	265	236	565	2640	1296	580
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	57.5	62.7	50.2	9.2	38.5	43.7
Incr Delay (d2), s/veh	1.4	160.7	94.7	0.3	0.4	8.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	8.5	36.2	68.0	19.3	16.5	24.9
LnGrp Delay(d),s/veh	58.9	223.5	144.9	9.4	38.9	52.2
LnGrp LOS	E	F	F	A	D	D
Approach Vol, veh/h	434			2107	1120	
Approach Delay, s/veh	174.9			52.0	44.3	
Approach LOS	F			D	D	
Timer	1	2	3	4	5	6
Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		116.5		31.0	56.0	60.5
Change Period (Y+Rc), s		9.0		9.0	9.0	9.0
Max Green Setting (Gmax), s		110.0		22.0	47.0	54.0
Max Q Clear Time (g_c+I1), s		29.6		24.0	49.0	40.2
Green Ext Time (p_c), s		35.1		0.0	0.0	11.3
Intersection Summary						
HCM 2010 Ctrl Delay			64.2			
HCM 2010 LOS			E			

Intersection						
Int Delay, s/veh	0.2					
			MOT	ME	051	000
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	f)		Y	
Traffic Vol, veh/h	0	365	959	21	17	0
Future Vol, veh/h	0	365	959	21	17	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storag	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	397	1042	23	18	0
	•					•
				_		
	Major1		Major2		Minor2	
Conflicting Flow All	1065	0	-	0	1451	1054
Stage 1	-	-	-	-	1054	-
Stage 2	-	-	-	-	397	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	654	-	-	-	144	275
Stage 1	_	-	-	-	335	-
Stage 2	-	_	-	-	679	_
Platoon blocked, %		_	_	_		
Mov Cap-1 Maneuver	654	_	_	_	144	275
Mov Cap 1 Maneuver		_	_	_	260	-
Stage 1	_				335	_
Stage 2	_	_	-	_	679	-
Staye 2	-	-	-	-	019	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		19.9	
HCM LOS					С	
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR :	
Capacity (veh/h)		654	-	-	-	260
HCM Lane V/C Ratio		-	-	-	-	0.071
HCM Control Delay (s)	0	-	-	-	19.9
HCM Lane LOS		Α	-	-	-	С
HCM 95th %tile Q(veh	1)	0	-	-	-	0.2

	•	•	1	†	Ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	7	ሻ	^	^	7
Traffic Volume (vph)	300	286	269	837	1178	345
Future Volume (vph)	300	286	269	837	1178	345
Turn Type	Prot	pm+ov	pm+pt	NA	NA	pm+ov
Protected Phases	4	5	5	2	6	4
Permitted Phases		4	2			6
Detector Phase	4	5	5	2	6	4
Switch Phase						
Minimum Initial (s)	7.0	4.0	4.0	10.0	10.0	7.0
Minimum Split (s)	12.5	10.0	10.0	16.0	16.0	12.5
Total Split (s)	40.0	25.0	25.0	80.0	55.0	40.0
Total Split (%)	33.3%	20.8%	20.8%	66.7%	45.8%	33.3%
Yellow Time (s)	3.2	4.3	4.3	4.3	4.3	3.2
All-Red Time (s)	2.3	1.7	1.7	1.7	1.7	2.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	6.0	6.0	6.0	6.0	5.5
Lead/Lag		Lead	Lead		Lag	
Lead-Lag Optimize?		Yes	Yes		Yes	
Recall Mode	None	None	None	Min	Min	None


Intersection Summary


Cycle Length: 120

Actuated Cycle Length: 102.9

Natural Cycle: 75

Control Type: Semi Act-Uncoord

	۶	•	•	†	+	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	7	ሻ	^	^	1
Traffic Volume (veh/h)	300	286	269	837	1178	345
Future Volume (veh/h)	300	286	269	837	1178	345
Number	7	14	5	2	6	16
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00	<u> </u>	J	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1900	1900	1863	1863	1900
Adj Flow Rate, veh/h	326	311	292	910	1280	375
Adj No. of Lanes	1	1	1	2	2	1
Peak Hour Factor	0.92		0.92		0.92	0.92
		0.92		0.92		
Percent Heavy Veh, %	0	0	0	2	2	0
Cap, veh/h	403	544	338	2298	1657	1116
Arrive On Green	0.22	0.22	0.11	0.65	0.47	0.47
Sat Flow, veh/h	1810	1615	1810	3632	3632	1615
Grp Volume(v), veh/h	326	311	292	910	1280	375
Grp Sat Flow(s),veh/h/ln	1810	1615	1810	1770	1770	1615
Q Serve(g_s), s	15.3	14.2	7.5	10.9	27.1	8.4
Cycle Q Clear(g_c), s	15.3	14.2	7.5	10.9	27.1	8.4
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	403	544	338	2298	1657	1116
V/C Ratio(X)	0.81	0.57	0.86	0.40	0.77	0.34
Avail Cap(c_a), veh/h	695	805	514	2916	1931	1241
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	33.1	24.4	19.6	7.4	19.9	5.6
Incr Delay (d2), s/veh	3.9	0.9	9.4	0.1	19.9	0.2
	0.0		0.0	0.1	0.0	0.2
Initial Q Delay(d3),s/veh		0.0				
%ile BackOfQ(95%),veh/ln	12.8	18.9	12.5	9.1	19.6	10.6
LnGrp Delay(d),s/veh	37.0	25.4	29.1	7.6	21.6	5.8
LnGrp LOS	D	С	С	A	С	A
Approach Vol, veh/h	637			1202	1655	
Approach Delay, s/veh	31.3			12.8	18.0	
Approach LOS	С			В	В	
Timer	1	2	3	4	5	6
Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		64.3		25.5	16.3	48.0
		* 6		5.5	* 6	* 6
Change Period (Y+Rc), s						
Max Green Setting (Gmax), s		* 74		34.5	* 19	* 49
Max Q Clear Time (g_c+l1), s		12.9		17.3	9.5	29.1
Green Ext Time (p_c), s		22.2		2.7	0.7	13.0
Intersection Summary						
HCM 2010 Ctrl Delay			18.6			
HCM 2010 LOS			В			
Notes						

L. C C						
Intersection	^ ^					
Int Delay, s/veh	0.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ች	7	ሻ	^	ħβ	
Traffic Vol, veh/h	0	27	0	1154	1532	21
Future Vol, veh/h	0	27	0	1154	1532	21
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	100	-	-	-
Veh in Median Storage	e, # 1	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	29	0	1254	1665	23
	Minor2		Major1		Major2	
Conflicting Flow All	2304	844	1688	0	-	0
Stage 1	1677	-	-	-	-	-
Stage 2	627	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	32	307	375	-	-	_
Stage 1	137	-	-	-	-	-
Stage 2	495	-	-	-	_	_
Platoon blocked, %				_	_	-
Mov Cap-1 Maneuver	32	307	375	-	_	_
Mov Cap 1 Maneuver	107	-	-	_	_	_
Stage 1	137	_	_	_	_	_
Stage 2	495	_	_	_	_	_
Olaye Z	700					
Approach	EB		NB		SB	
HCM Control Delay, s	18		0		0	
HCM LOS	С					
Minor Lane/Major Mvn	nt	NBL	NRT	EBLn1 i	ERI n2	SBT
	ı					
Capacity (veh/h)		375	-	-	307	-
HCM Lane V/C Ratio		-	-		0.096	-
HCM Control Delay (s)		0	-	0	18	-
HCM Lane LOS	,	A	-	Α	С	-
HCM 95th %tile Q(veh)	0	-	-	0.3	-

Intersection								
Int Delay, s/veh	4.7							
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	ሻ	7	ሻ	^	^	7		
Traffic Vol, veh/h	74	153	99	1034	1427	54		
Future Vol, veh/h	74	153	99	1034	1427	54		
Conflicting Peds, #/hr		0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	None	-	None	-			
Storage Length	0	250	560	-	-	150		
Veh in Median Storage	e, # 0	-	-	0	0	-		
Grade, %	0	-	-	0	0	-		
Peak Hour Factor	92	92	92	92	92	92		
Heavy Vehicles, %	2	2	2	2	2	2		
Mvmt Flow	80	166	108	1124	1551	59		
Major/Minor	Minor2	N	Major1	ı	Major2			
Conflicting Flow All	2328	776	1551	0	-	0		
Stage 1	1551	-	-	-	-	-		
Stage 2	777	-	-	-	-	-		
Critical Hdwy	6.84	6.94	4.14	-	-	-		
Critical Hdwy Stg 1	5.84	-	-	-	-	-		
Critical Hdwy Stg 2	5.84	-	-	-	-	-		
Follow-up Hdwy	3.52	3.32	2.22	-	-	-		
Pot Cap-1 Maneuver	~ 31	340	423	-	-	-		
Stage 1	161	-	-	-	-	-		
Stage 2	414	-	-	-	-	-		
Platoon blocked, %				-	-	-		
Mov Cap-1 Maneuver		340	423	-	-	-		
Mov Cap-2 Maneuver		-	-	-	-	-		
Stage 1	161	-	-	-	-	-		
Stage 2	308	-	-	-	-	-		
Approach	EB		NB		SB			
HCM Control Delay, s			1.4		0			
HCM LOS	F				•			
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1 E	EBLn2	SBT	SBR	
Capacity (veh/h)		423	-		340	-	-	
HCM Lane V/C Ratio		0.254		0.759		<u>-</u>	<u>-</u>	
HCM Control Delay (s	(16.4		105.3	25.3	-	-	
HCM Lane LOS	,	С	_	F	D	_	-	
HCM 95th %tile Q(veh	1)	1	-		2.6	-	-	
•	<i>'</i>							
Notes	'1	ф D	.la		00-		autation Nat D.C.	*. All
~: Volume exceeds ca	apacity	\$: De	elay exc	ceeds 3	UUS	+: Com	putation Not Defined	*: All major volume in platoon

Intersection						
Int Delay, s/veh	0.6					
				=		
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	₽		Y	
Traffic Vol, veh/h	0	204	133	20	23	0
Future Vol, veh/h	0	204	133	20	23	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	222	145	22	25	0
N 4 = i = 11/N 4 i = 1	N A = ! A		4-1-0		Min C	
	Major1		Major2		Minor2	4
Conflicting Flow All	166	0	-	0	377	155
Stage 1	-	-	-	-	155	-
Stage 2	-	-	-	-	222	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1412	-	-	-	625	891
Stage 1	-	-	-	-	873	-
Stage 2	-	-	-	-	815	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1412	-	-	-	625	891
Mov Cap-2 Maneuver	-	_	-	-	669	-
Stage 1	-	-	-	-	873	-
Stage 2	_	_	_	_	815	_
Jugo 2					3.3	
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		10.6	
HCM LOS					В	
Minor Lanc/Major Mun	nt .	EBL	EBT	WBT	WPD	CDI n1
Minor Lane/Major Mvn	ι		EBI	MRI	WBR :	
Capacity (veh/h)		1412	-	-	-	669
HCM Lane V/C Ratio	_	-	-	-		0.037
HCM Control Delay (s)		0	-	-	-	10.6
HCM Lane LOS	,	Α	-	-	-	В
HCM 95th %tile Q(veh)	0	-	-	-	0.1

615 Third Avenue South, Suite 100 Nashville, Tennessee 37210

Phone: 615.252.4373 | Fax: 615.255.6572

www.bargedesign.com

MEMORANDUM

To: Wendy Deats Town of Thompson's Station

From: Peter Kauffmann, PE, PTOE Barge Design Solutions

Jonathan Smith, PE Barge Design Solutions

Date: October 24, 2018

Project ID: 36727-04

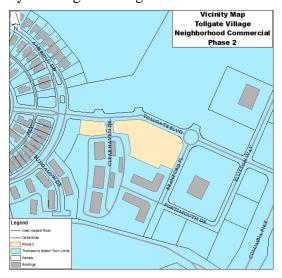
Re: Review of Comment Responses for Tollgate Village Traffic Impact Study

in Thompson's Station, Tennessee (responses dated October 23, 2018)

Barge Design Solutions has completed its review of comment responses submitted on October 24, 2018 regarding the Tollgate Village project in Thompson's Station, TN. Barge had previously provided comments on the Tollgate Village Traffic Impact Study (TIS), dated October 12, 2018. The Traffic Engineer for this project is Ragan-Smith Associates.

In general, this review finds that the findings and conclusions of the study are valid and should be accepted by the Town. The study successfully demonstrates that the access scheme proposed by the Applicant, which would see the creation of a third access point to Tollgate Village by extending Branford Drive to Declaration Way while maintaining signal control at Tollgate Drive and right-in/right-out access at the northern driveway, is appropriate to handle the level of travel demand expected to occur at the development given the latest site plans and updated traffic data collected in fall 2018.

Additional Findings:


- This review finds that the Traffic Engineer has provided an acceptable response to the main actionable comment (Comment #2) that acknowledges the deterioration in LOS at the Declaration Way intersection and satisfactorily discusses why mitigations in this location are not appropriate.
- The Traffic Engineer has acknowledged the remaining comments but has declined to revise the TIS to incorporate those elements. The October 12, 2018 TIS and its conclusions are valid from a technical standpoint and can be accepted by the Town without revisions; however, Town Staff should be aware that the document retains some typos in the narrative and oversimplifies some elements of the trip generation in a way that could potentially cause confusion or additional questioning during the Planning Commission meeting depending on the level of scrutiny it receives from commissioners and community stakeholders. The Applicant's Traffic Engineer should be prepared to elaborate on these items in more detail should questions arise during the Planning Commission meeting, although again it should be noted that these items would not impact the results or findings of the TIS.
- The Applicant should also be prepared to discuss the level of their commitment to providing the third access point from Tollgate onto Declaration Way during the meeting.

Thompson's Station Planning Commission Staff Report - Item 3 (SP 2018-007, DR 2018-004) October 25, 2018

Request for site plan approval of 12 condominiums, one mixed-use building with three units and 2,633 square feet of commercial, two live work buildings with nine units and 3,393 square feet of commercial and 14 townhomes located along Tollgate Boulevard.

REOUEST

The applicant, Ragan Smith, on behalf of Regent Homes is requesting approval of a site plan for the development of 12 condominiums, a mixed-use building, two live work buildings and 14 townhomes located along the south side of Tollgate Boulevard within the D3 and Neighborhood Commercial (NC) zoning districts in the community of Tollgate Village.

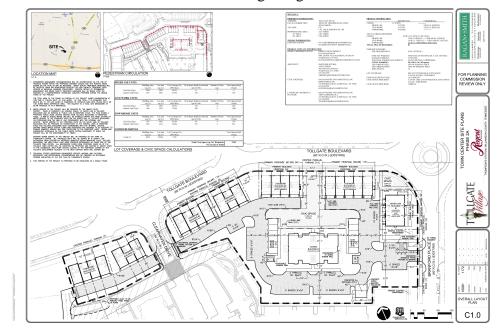
BACKGROUND

The Tollgate Village site development plan dated April 2014 consists of a variety of housing throughout the site with commercial/office located in proximity to Columbia Pike (State Route 6). The existing housing includes 201 apartments (located on Branford Place, south of Tollgate Boulevard), 30 condominiums (located along Americus), 61 townhomes (along Bungalow Drive, Newark Lane and Rochelle Lane) and single-family residences within Sections 1-15, 17 and 18 and preliminary plat approval for phase 16. Existing nonresidential uses include the medical office building and a general office building located in the front sections of the development along Tollgate Boulevard and Elliston Way.

A rezoning was completed to zone the front portion of Tollgate Village as NC (neighborhood commercial) to permit the land uses that were previously approved through the site development process. The NC zone was then amended to permit additional residential uses, such as townhomes. Phase 1 of the "town center" area of Tollgate Village located along the north side of Tollgate Boulevard between Elliston Way and a future extension of Branford Place was approved for mixed use, live work and commercial uses. The construction drawings are under review by Town Staff for this project.

ANALYSIS

Site Plan


Site plan is a plan presenting the general details of the development proposal and review by the Planning Commission is required for all multi-family and non-residential developments to ensure "compliance with the development and design standards" (Section 5.4.4) of the Land Development Ordinance.

Plat Requirements

The project site is one parcel; however, a preliminary plat was submitted for the subdivision of the property into the necessary lots for the development of this site plan. By creating legal lots for each of the proposed units or buildings, the property lines will be set thereby allowing the details of the site plan to be accurate.

Project Description

The project site which is 3.28 acres is located along the south side of Tollgate Boulevard between Branford Place and Americus Drive. The proposal consists of eight buildings. One condominium building with 12 units will be located in the interior of the site adjacent to the apartments (on Branford Place). One mixed use building with a total of 2,633 square feet of commercial uses and three residential units (5,266 square feet) will be located at the southwest corner of Tollgate Boulevard and Branford Place. Two live work buildings with a total of 3,393 square feet of commercial and nine 9 residential units will be located along Tollgate Boulevard, west of Branford Place. Four townhomes buildings with a total of 14 units will be located along Tollgate Boulevard.

Zoning

The project site is located within two zoning districts: D3 and NC. The D3 zone is "intended for higher, density residential development where urban services and facilities, including public sewer, are provided or where the extension of such services and facilities will be available prior to development." Seven of the townhomes are proposed within this district the D3 district and are permitted. The Neighborhood Commercial zone "should include neighborhood commercial activities, small-scale businesses, and high intensity residential" (LDO Section 1.2.7). The remaining townhomes, condominiums, live work along with mixed use building are permitted within the NC zone.

Neighborhood Commercial Standards

Please note, the analysis of this project with regard to the development standards is based the assumption the property will be subdivided as submitted with the preliminary plat. Any changes to the plat may result in a revision to the site plan.

Primary building frontage is a 12-foot maximum. The mixed building 1 does not conform to the maximum setback, however there is a 20-foot easement for utilities along this frontage. Therefore, the proposed setback can be permitted to accommodate the easement. The condominium building is also setback beyond both the MTEMC easement and an easement for the sewer and therefore can also be approved at the proposed setback. All other buildings conform to the primary frontage setback. Access to the parking located behind the buildings is provided from Branford Place and Tollgate Boulevard (via Clearhaven Drive) and all parking will maintain a minimum of a 20-foot landscaped setback. Primary building frontage is 60% minimum and the proposed buildings meet the frontage requirement. Density is permitted at 12 units per acre. The proposed site area is 3.28 acres with 38 residential units, however, approximately .46 acres is located within the D3 zone with the remaining 2.81 acres within the NC zone. The project consists of seven units within the D3 zone and 30 units within the remaining acreage for a density of 10.7 units per acre.

Mixed use buildings are defined as "residential use combined with commercial use within the same building through superimposition or adjacency. This building type is urban in character and frequently is a multi-story building with residential uses above commercial uses. Residential uses within a mixed-use building shall not exceed 75% of the total use except within the G3 sector" (Section 1.3). Mixed use building 1 is three stories with 7,899 square feet and three residential units using 5,266 square feet for a total of 67% of the overall building with the remaining square footage as commercial square footage.

Section 4.11.1

Buildings should be located along road frontage with parking located in the rear.

Seven of the buildings are located along the road frontage setback behind the required landscaping and any easements and the condominium building is located within the interior of the site beyond a sewer easement. All onsite parking is located within the interior of the site.

Lot coverage shall not exceed the standards of Table 4.10 through Table 4.13 and shall include the footprint of all structures on the site.

Lot coverage permitted is 50% for nonresidential and 90% for residential. Several buildings on site exceed 50% and therefore, additional civic space within ½ mile of the units is required. Therefore, 3,154 square feet of civic space is required and provided on site. The project includes two civic space areas: a plaza around the condominium building and a green at the southwest corner of Tollgate Boulevard and Branford Place. All residential units are within a ¼ mile of the proposed civic space.

Construction shall incorporate masonry and brick or shall match the character of the surrounding area. No vinyl is permitted. Metal siding is discouraged and shall be used only as an accent treatment. Building facades shall include varied wall planes and roof lines, projections and recesses, window articulation and natural color schemes.

Building heights are limited to three stories. The ground floor can be no less than 11 feet in height and shall. The proposed condominium building, townhomes, live work units are three story brick buildings and the garages are single story. The materials and colors of the buildings will be required to be consistent on all four elevations and the glazing requirements will need to be satisfied. The buildings consist of varied wall planes, balconies, proportionate windows with window treatments. The elevation notes specify the buildings are brick with stone accents and asphalt shingle roofing with accent metal roofing.

The Design Guidelines seek to promote design excellence in character and compatibility of development to its surroundings and the project will be subject to design review by the DRC upon

approval of the site plan. Upon approval of the site plan the Design Review Commission will review the project.

Groupings of buildings shall be used instead of long linear rows of buildings. Building massing shall incorporate varied rooflines, building heights and other architectural features.

Several buildings are proposed along the roadways with various lengths and massing with civic space and entry points separating the buildings. As noted above, all architecture will be reviewed by the Design Review Commission once site approval is granted.

Entry drives shall be designed to incorporate enhanced paving, landscaping and other features which complement the building architecture.

Enhanced paving consisting of a decorative pattern and banding will be incorporated into the driveway entrance along Branford Place. Clearhaven Drive is a private road entering the site and should include the decorative paving to match the other driveway entrances.

Each development shall include trash areas that will be designed to accommodate two trash bins, one which will be designed for recycling. The trash enclosure shall be enclosed by a masonry wall that matches the architecture of the buildings on site. In addition, a landscape planter shall be utilized to provide screening around the trash enclosure.

A trash area, including recycling is provided along the south/interior property line and is proposed to be enclosed by a masonry wall with landscaping.

All ground or building mounted mechanical equipment shall be landscaped to reduce visibility from adjacent properties, rights-of-way and parking areas.

All equipment is shown at grade and will be screened.

No temporary structures shall be permitted.

No temporary structures are proposed.

Parking

Given the potential for uses within the buildings, the applicant has provided a breakdown of parking including the number of spaces for office and retail within the live work and mixed-use buildings. The amount of parking is likely to require 81 parking spaces; however, the project includes 96 parking spaces. Therefore, the project is subject to the low impact design (LID). The LID will be achieved using permeable pavers within the parking areas and the drive aisles.

Landscaping

The site is zone Neighborhood Commercial and the properties surrounding are zoned NC thereby requiring a type 1 buffer which is composed of "intermittent visual obstruction" along the property lines. The plan shows adequate trees and shrubs planted along the interior property line as the buffer between this site and the neighboring property. To ensure completion of the landscaping improvements in accordance with the approved plan, a performance surety should be set to ensure the landscaping. The opinion of probable cost submitted to the Town was \$61,191 therefore Staff recommends the amount of the surety be set at \$71,000 which includes a 15% contingency.

Lighting

Lighting will be installed throughout the project site to provide lighting within the parking lot and on the buildings. A photometric plan was submitted demonstrating that the lighting will not have a negative impact to the surrounding roadways and properties.

Open Space

The open space required for the Tollgate Village subdivision is 120 acres and as of this submittal all open space is recorded.

Geotechnical Information

A geotechnical report was submitted for the project site and all recommendations during the development process should be incorporated into the contingencies for approval of the project.

Traffic

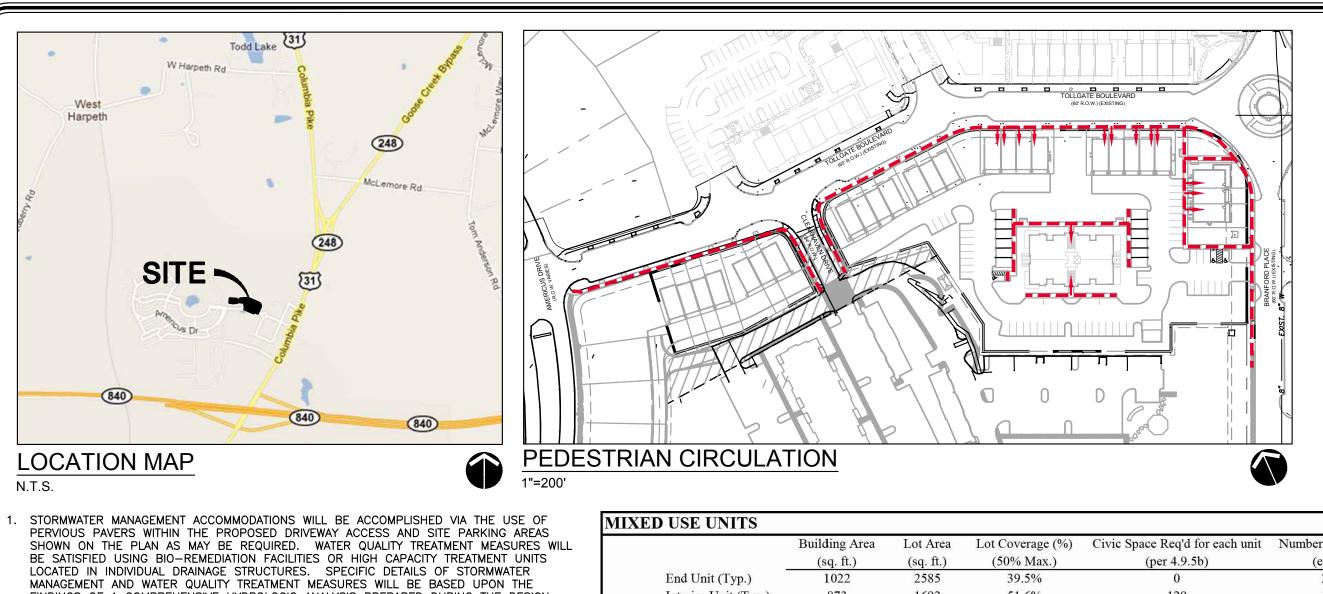
Significant concerns were noted in the review of the original trip generation analysis. Therefore, after discussions with the Town's traffic engineer, a revised traffic study was submitted on Friday, October 12[.] 2018. The revised study was completed to collect current traffic count data, quantify existing traffic demand along Tollgate Boulevard, and update the expected future land uses within Tollgate Village.

Staff has forwarded the study to the Town's traffic engineer, however, there was not adequate time for a thorough review by the time of staff reports. Therefore, the traffic engineer will present their review of the traffic study at the Commission meeting.

Sewer

The Tollgate Village development has approval for 943 sewer taps. To date, Staff believes 832 taps are committed for the neighborhood. The developer submitted a site plan without any documentation on the number of sewer taps necessary for the project. Therefore, the Town's sewer engineer has reviewed the site plan for section 2A and based on the proposed land uses has determined that 50 taps will be necessary for the project (see attached). Therefore, the project does have sewer availability, however, these 50 will reduce the number of taps available for the remaining development.

RECOMMENDATION


Approval to the plat should incorporate the following contingencies:

- 1. Prior to the issuance of grading or building permits, the project site shall be subdivided into legal lots for the project.
- 2. Prior to the issuance of grading or building permits, approval of the project design by the Design Review Commission shall be obtained.
- 3. Prior to the issuance of grading or building permits, approval/acceptance of a written shared parking agreement is required.
- 4. Prior to the issuance of grading or building permits, construction drawings shall be reviewed and approved. Any corrections or issues with the drawings related to regulations may be subject to further Planning Commission review. Any upgrades to the utility infrastructure necessary for the project shall be incorporated into the construction plans and shall be completed by the applicant.
- 5. Prior to the issuance of building permits, floor plans and parking analysis for each use shall be submitted and shall meet the requirements set forth within the Land Development Ordinance.
- 6. Within 60 days of project approval, a performance agreement and surety in the amount of \$71,000 for onsite landscaping improvements shall be submitted.
- 7. Prior to installation of the landscaping, the applicant shall meet with staff to confirm location of all landscaping.

- 8. Prior to the issuance of a building permits, the plans shall be modified/corrected to include a table showing the window glazing conforms to the LDO and enhanced paving to match Branford Place shall be installed at the Clearhaven Drive entrance.
- 9. Prior to the installation of signage, a master sign plan shall be submitted for review and approval.
- 10. All recommendations from the Geotechnical Report dated August 27, 2018 shall be adhered to throughout the development of the project.
- 11. Any change of use or expansion of the project site shall conform to the requirements set forth within the Zoning Ordinance and shall be approved prior to the implementation of any changes to the project.

ATTACHMENTS

Site plan packet Traffic Study (dated October 12, 2018) Sewer tap analysis (provided by town sewer engineer)

FINDINGS OF A COMPREHENSIVE HYDROLOGIC ANALYSIS PREPARED DURING THE DESIGN PHASE OF THE PROJECT.

THE TOTAL AREA OF THE PHASE 2A PORTION OF THE PROJECT UNDER CONSIDERATION AT THIS TIME IS 176.932 SQ.FT. OF 4.06 ACRES. OF THIS TOTAL, IT IS ESTIMATED THAT 98,010 SQ. FT. OR 2.25 ACRES IS COMPRISED OF PERVIOUS AREA WITH 78,408 SQ.FT. OR 1.80 ACRES BEING IMPERVIOUS AREA. THIS EQUATES TO A TOTAL SITE BREAKDOWN OF 55.4% PERVIOUS TO 44.6 IMPERVIOUS.

2. WATER SERVICE TO THE PROJECT WILL BE PROVIDED BY THE HB&TS UTILITY DISTRICT. THERE IS CURRENTLY AN EXISTING PUBLIC 12" WATER LINE IN TOLLGATE BOULEVARD AND AN EXISTING 8" PUBLIC LINE IN BRANFORD PLACE. THE PLAN SHOWS A PROPOSED PUBLIC ROAD LOOPING AROUND FROM TOLLGATE BOULEVARD TO BRANFORD PLACE. A NEW 8" PUBLIC WATER LINE WILL BE INSTALLED WITHIN THIS ROAD, SETTING UP WATER SERVICE TO THE PROPOSED UNITS ON THE NORTH SIDE OF TOLLGATE BOULEVARD VIA EXTENSIONS ROM THE NEW 8" LINE COORDINATED WITH THE INTERNAL UNIT LAYOUTS. WATER SERVICE TO THE PROPOSED UNITS ON THE SOUTH SIDE OF TOLLGATE BOULEVARD WILL BE PROVIDED VIA CONNECTIONS TO THE EXISTING LINES IN BRANFORD PLACE AND TOLLGATE BOULEVARD ALSO COORDINATED WITH THE INTERNAL LAYOUTS. EXISTING HB&TS WATER SYSTEM FLOWS AND PRESSURES ARE ASSUMED TO BE ADEQUATE TO PROVIDE DOMESTIC SERVICE AND FIRE PROTECTION TO THE PROPOSED UNITS. DESIGN AND SUBSEQUENT APPROVALS OF THE PUBLIC WATER SYSTEM NECESSARY TO SERVE THE

TECHNICAL STUDIES ADDRESSING ENDANGERED SPECIES, NATURAL AND CULTURAL RESOURCES, AND GEOTECHNICAL CONSIDERATIONS WILL BE PROVIDED AS APPLICABLE

	Building Area Lot Area Lot Coverage (%) Civic Space Req'd for each un		Number of Units	Civic Space Req'd			
	(sq. ft.)	(sq. ft.)	(50% Max.)	(per 4.9.5b)	(ea.)	(Total)	
End Unit (Typ.)	1022	2585	39.5% 0		2	0	
Interior Unit (Typ.)	873	1692	51.6%	129	1	129	
LIVE/WORK UNITS							
	Building Area	Lot Area	Lot Coverage (%)	Civic Space Req'd for each unit	Number of Units	Civic Space Req'd	
	(sq. ft.)	(sq. ft.)	(50% Max.)	(per 4.9.5b)	(ea.)	(Total)	
End Unit (Typ.)	936	1609	58.2%	132	4	528	
Interior Unit (Typ.)	854	1192	71.6%	258	5	1290	
TOWNHOME UNITS							
	Building Area	Lot Area	Lot Coverage (%)	Civic Space Req'd for each unit	Number of Units	Civic Space Req'd	
	(sq. ft.)	(sq. ft.)	(50% Max.)	(per 4.9.5b)	(ea.)	(Total)	
End Unit (Typ.)	937	1687	55.5%	94	4	376	
Interior Unit (Typ.)	852	1151	74.0%	277	3	831	
CONDO BUILDINGS							
	Building Area	Lot Area	Lot Coverage (%)			Civic Space Req'd	
	(sq. ft.)	(sq. ft.)	(50% Max.)			(Total)	
Condo #1	6953	92816	7.5%			0	
				m		2151	

SITE DATA: PROPERTY INFORMATION: PROJECT INFORMATION: TOLLGATE BLVD ADDRESS: **COMMERCIAL** TOWN OF THOMPSON'S STATION CONDO: LOCAL JURISDICTION: 12 UNITS WILLIAMSON 3 UNITS 2,633 S.F. (OFFICE) MIXED USE: TAX MAP: LIVE/WORK: 9 UNITS 3,393 S.F. (RETAIL) 1.07, 1.08, & PORTION OF 1.09 TOWNHOME: 14 UNITS -----PROPOSED SITE AREA: 3.27 ACRES 2.81 ACRES TOTAL PARKING REQUIRED: NC AREA: D3 AREA: 0.46 ACRES 24 SP. (12 UNITS X 2 SP./UNIT) CONDO: MIXED USE: 12 SP. (1 PER D.U. + 1 PER 300 S.F. OFFICE) ZONING INFORMATION: LIVE/WORK: 24 SP. (1.5 PER D.U. + 3 PER 1,000 S.F. RETAIL) EXISTING ZONING: NC (NEIGHBORHOOD COMMERCIAL) TOWNHOME: 21 SP. (1.5 PER DWELLING UNIT) D3 (HIGH INTENSITY RESIDENTIAL) **TOTAL SPACES REQUIRED: PROJECT CONTACT INFORMATION:** PARKING SUMMARY: PROJECT REPRESENTATIVE: REGENT DEVELOPMENT SIZE REQUIREMENT: 9'x18' (TYPICAL) DAVID McGOWAN SURFACE PARKING: 58 SPACES (55 STD SPACES, 3 ACC. SPACES) 6901 LENOX VILLAGE DRIVE, SUITE 107 GARAGE PARKING: 12 SPACES NASHVILLE, TN 37211 PARALLEL PARKING (ON STREET): 26 (26 EXISTING, 0 PROPOSED) DAVID.MCGOWAN@REGENTHOMES-TN.COM **TOTAL PARKING:** 96 (118%= 96 / 81 SPACES) LID PARKING (REQUIRED): 50% OF PARKING AREA ARCHITECT: SMITH GEE STUDIO 100% OF PARKING AREA LID PARKING (PROPOSED): ANDY BERRY BIKE SPACES: 209 10TH AVE SOUTH NASHVILLE, TN, 37203 LOT COVERAGE: SEE LOT COVERAGE & CIVIC SPACE 615-739-5555 CALCULATIONS - THIS SHEET ABERRY@SMITHGEESTUDIO.COM FRONTAGE PERCENTAGE: AS LABELED 3,154 S.F. (SEE LOT COVERAGE & CIVIC SPACE CIVIC SPACE REQUIRED: RAGAN-SMITH AND ASSOCIATES, INC CIVIL ENGINEER: CALCS - THIS SHEET) BOB NICHOLS, PE. CIVIC SPACE PROVIDED: 13,889 S.F. 315 WOODLAND ST, NASHVILLE, TN 37206

615-244-8591

615-244-8591

LANDSCAPE ARCHITECT/

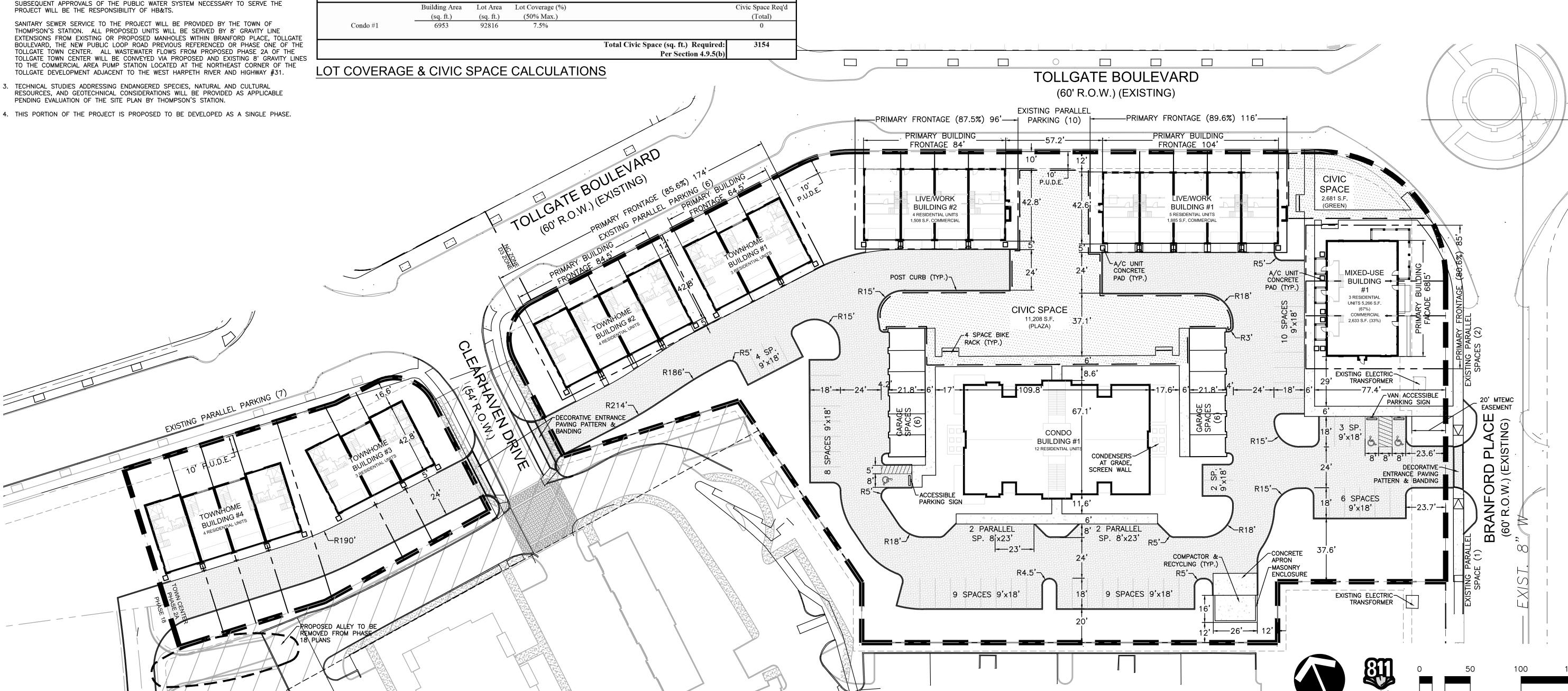
PLANNER:

BNICHOLS@RAGANSMITH.COM

TGARDNER@RAGANSMITH.COM

TROY GARDNER, PLA

RAGAN-SMITH AND ASSOCIATES, INC


315 WOODLAND ST, NASHVILLE, TN 37206

FOR DESIGN COMMITTEE **REVIEW ONLY**

172

1008

OVERALL LAYOUT PLAN

PLANTING NOTES:

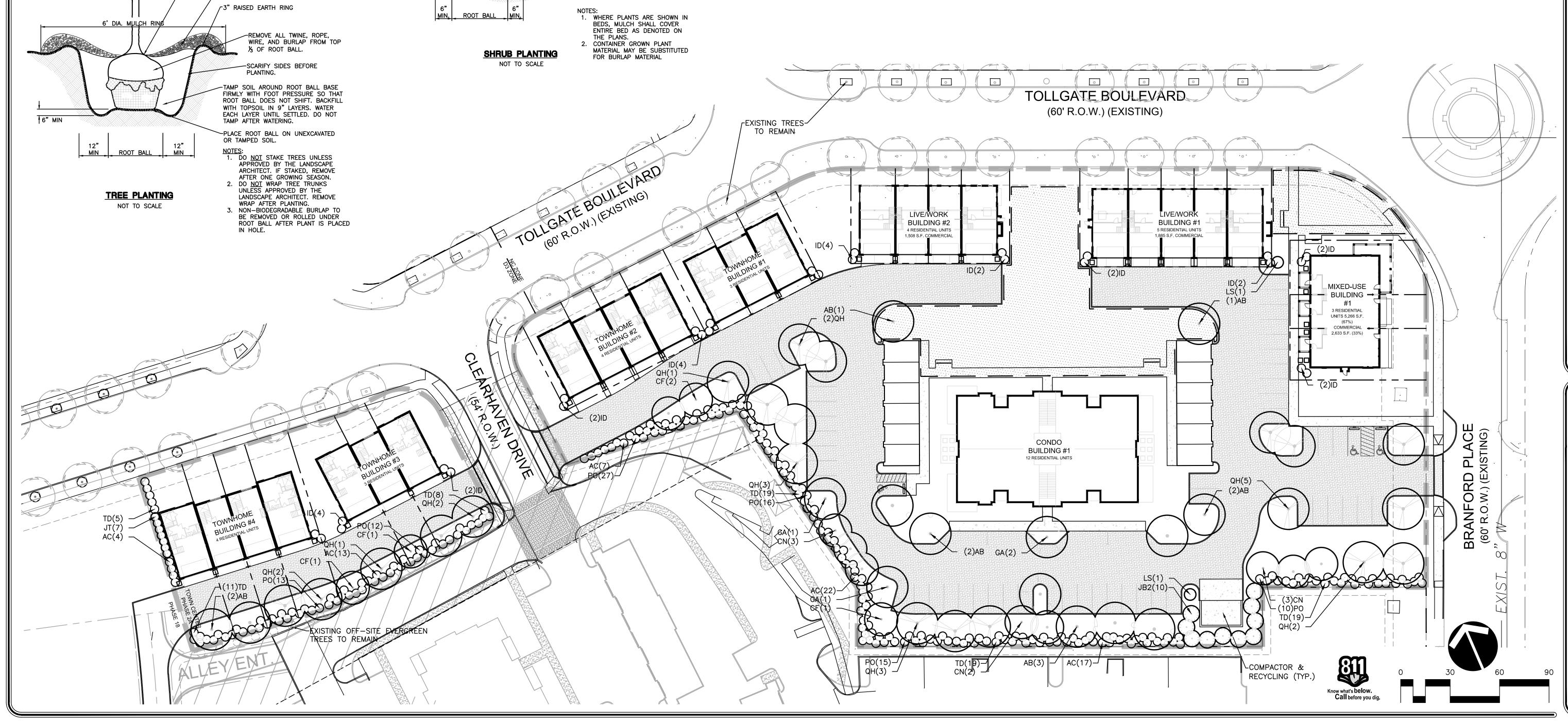
- 1. ANY SERIES OF TREES TO BE PLACED IN A PARTICULAR ARRANGEMENT WILL BE FIELD CHECKED FOR ACCURACY. ANY PLANTS MISARRANGED WILL BE RELOCATED.
- 2. SOIL USED IN BACKFILLING PLANTING PITS SHALL BE TOPSOIL AND MIXED WITH 25% PEAT BY VOLUME. EXCEPT FOR ERICACEOUS PLANTS, VERY ACID OR SOUR SOIL (SOIL HAVING A pH less than 6) SHALL BE MIXED WITH SUFFICIENT LIME TO PRODUCE A SLIGHTLY ACID REACTION (A pH of 6.0 to 6.5). ADD 10-10-10 COMMERCIAL FERTILIZER AT THE RATE OF 2 POUNDS PER CUBIC YARD, MIX BOTH FERTILIZER AND PEAT THOROUGHLY BY HAND OR ROTARY TILLER.
- 3. SOIL USED IN BACKFILLING ERICACEOUS PLANTS SHALL BE TOPSOIL MIXED WITH 50% PEAT BY VOLUME. ADD 5-10-5 COMMERCIAL FERTILIZER AT THE RATE OF 5 POUNDS PER CUBIC YARD. MIX BOTH FERTILIZER AND PEAT THOROUGHLY BY HAND OR ROTARY TILLER.
- 4. UPON SECURING PLANT MATERIAL AND BEFORE INSTALLATION, THE CONTRACTOR SHALL NOTIFY THE LANDSCAPE ARCHITECT OR OWNER'S REPRESENTATIVE FOR A PRE-INSTALLATION INSPECTION TO VERIFY ALL PLANT MATERIAL MEETS SPECIFICATION. MATCH TREES OF SAME SPECIES IN GROWTH CHARACTER AND
- 5. APPLY HERBICIDE (TREFLAN OR EQUIVALENT) TO ALL PLANT BEDS PRIOR TO PLANTING FOR NOXIOUS WEED CONTROL AT A RATE OF 2 POUNDS PER 1,000 SQUARE FEET. 6. CONTRACTOR SHALL SUBMIT A 10 OUNCE SAMPLE OF THE TOPSOIL PROPOSED TO A TESTING LABORATORY FOR ANALYSIS. SUBMIT TEST RESULTS WITH RECOMMENDATIONS FOR SUITABILITY TO THE OWNER'S
- REPRESENTATIVE FOR APPROVAL. 7. PLANTS SHALL BE ORIENTED FOR BEST APPEARANCE AND VERTICAL.ALL NON-BIODEGRADABLE ROOT CONTAINERS SHALL BE REMOVED.
- 8. SELECTIVELY TRIM TREE BRANCHES BY 25%, MAINTAINING NATURAL SHAPE. PRUNE ALL DEAD AND BROKEN BRANCHES IN TREES AND SHRUBS. REMOVE TAGS, TWINE OR OTHER NON-BIODEGRADABLE MATERIAL. 9. SCARIFY SUBSOIL IN PLANTING BEDS TO A DEPTH OF 3 INCHES. ALL PLANTING BEDS SHALL RECEIVE A
- MINIMUM OF 6 INCHES OF TOPSOIL 10. CONTRACTOR SHALL PROVIDE SMOOTH, NEATLY TRENCHED (3 INCH DEEP) BED EDGES.
- 11. ALL PLANTING BEDS TO HAVE A MINIMUM 4 INCH DEEP PINE BARK MULCH, PINE STRAW MULCH OR OTHER MULCH AS SPECIFIED. 12. DIMENSIONS FOR TRUNK CALIPER, HEIGHTS, AND SPREAD SPECIFIED ON THE MATERIAL SCHEDULE ARE A GENERAL GUIDE FOR THE MINIMUM REQUIRED SIZE OF EACH PLANT, QUALITY AND SIZE OF PLANTS, SPREAD
- OF ROOTS AND SIZE OF BALLS SHALL BE IN ACCORDANCE WITH A.N.S.I. Z60.1 "AMERICAN STANDARD FOR NURSERY STOCK" (CURRENT EDITION) AS PUBLISHED BY THE AMERICAN ASSOCIATION OF NURSERYMEN, INC. 13. TREES OF THE SAME SPECIES SHALL HAVE THE FOLLOWING CHARACTERISTICS: MATCHED BY BRANCHING HEIGHT, CALIPER, HEIGHT OF TREE, SPREAD OF BRANCHES AND BRANCHING STRUCTURE, AND OVERALL CANOPY SHAPE.
- 14. THE QUANTITIES INDICATED ON THE MATERIAL SCHEDULE ARE PROVIDED FOR THE BENEFIT OF THE CONTRACTOR, BUT SHOULD NOT BE ASSUMED TO ALWAYS BE CORRECT. IN THE EVENT OF A DISCREPANCY, THE PLANTING PLAN (PLANT SYMBOLS) WILL TAKEN PRECEDENCE PLANTED. CONTRACTOR SHALL BE RESPONSIBLE FOR HIS/HER OWN QUANTITY CALCULATIONS AND THE LIABILITY
- PERTAINING TO THOSE QUANTITIES AND ANY RELATED CONTRACT DOCUMENTS AND/OR PRICE QUOTATIONS. 15. CONTRACTOR TO WARRANTY ALL MATERIAL FOR ONE YEAR AFTER DATE OF FINAL ACCEPTANCE.

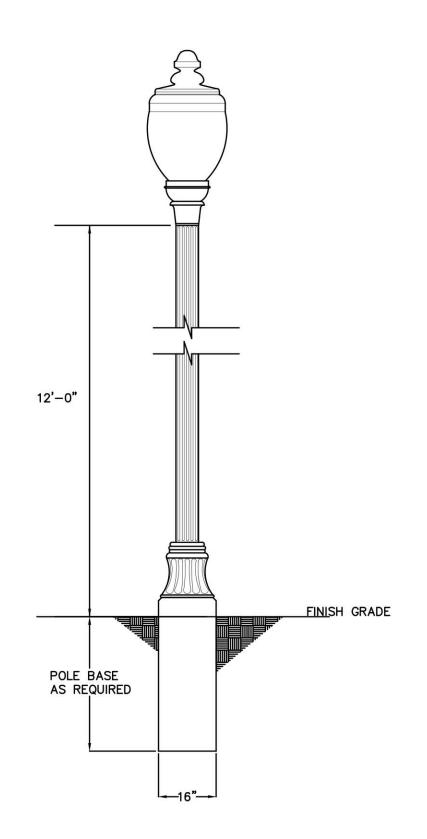
SEEDING NOTES

- . SEED ALL DISTURBED AREAS WITH TURF-TYPE TALL FESCUE. THE SEED SHALL BE A BLEND OF 3-5 VARIETIES (ADDRESSING BOTH COLD HARDINESS AND DROUGHT TOLERANCE) FROM THE TOP 10% SELECTIONS IN THE NATIONAL TURFGRASS EVALUATION PROGRAM (N.T.E.P) TALL FESCUE TRIALS, MOST RECENT EVALUATION YEAR (WWW.NTEP.ORG). THE SEED SHALL BE CROP AND WEED FREE. SEED AT THE RATE OF 5 POUNDS PER 1,000 S.F. ALL SEED TO BE 98% PURE WITH 85% GERMINATION AND CONFORM TO ALL STATE REQUIREMENTS FOR GRASS SEED. THE FERTILIZER TO BE 6-12-12 COMMERCIAL TYPE WITH 50% OF ITS ELEMENTS DERIVED FROM ORGANIC SOURCES.
- PLACE STRAW MULCH ON SEEDED AREAS. STRAW TO BE OATS OR WHEAT STRAW, FREE FROM WEEDS, FOREIGN MATTER DETRIMENTAL TO PLANT LIFE, AND DRY. HAY OR CHOPPED CORNSTALKS ARE NOT ACCEPTABLE. THE CONTRACTOR SHALL VERIFY THAT THE PREPARED SOIL BASE IS READY TO RECEIVE WORK. CULTIVATE THE TOPSOIL TO A DEPTH OF 4 INCHES WITH A MECHANICAL TILLER AND SUBSEQUENTLY RAKE UNTIL SMOOTH.
- REMOVE FOREIGN MATERIALS COLLECTED DURING CULTIVATION AND RAKING OPERATIONS. 4. APPLY FERTILIZER ACCORDING TO THE MANUFACTURER'S RECOMMENDATIONS. LIMESTONE MAY BE APPLIED WITH THE FERTILIZER. APPLY FERTILIZER AFTER SMOOTH RAKING AND PRIOR TO ROLLER COMPACTION AND MIX
- THOROUGHLY IN THE UPPER 2 INCHES OF TOPSOIL APPLY SEED EVENLY IN TWO INTERSECTING DIRECTIONS AND RAKE IN LIGHTLY. WATER TOPSOIL LIGHTLY PRIOR
- TO APPLYING SEED. DO NOT SEED AREA IN EXCESS OF THAT WHICH CAN BE MULCHED ON THE SAME DAY. 6. ROLL SEEDED AREA WITH ROLLER NOT EXCEEDING 112 POUNDS.
- 7. IMMEDIATELY FOLLOWING SEEDING AND COMPACTING. APPLY STRAW MULCH AT THE RATE OF ONE AND ONE HALF BALES PER 1.000 SQUARE FEET. IMMEDIATELY AFTER MULCHING, APPLY WATER WITH A FINE SPRAY AND SATURATE THE GROUND TO A DEPTH OF 4 INCHES.
- CONTRACTOR IS RESPONSIBLE FOR WATERING SEEDED AREAS TO PREVENT GRASS AND SOIL FROM DRYING OUT UNTIL THE INSTALLATION IS INSPECTED AND ACCEPTED BY THE OWNER'S REPRESENTATIVE.
- 9. CONTRACTOR IS RESPONSIBLE FOR RESEEDING BARE SPOTS FOR A PERIOD OF ONE YEAR AFTER ACCEPTANCE

IRRIGATION NOTES:

- 1. ALL PROPOSED PLANTED AREAS ARE TO BE IRRIGATED UTILIZING FULL COVERAGE DESIGN.
- 2. SUBMIT PROPOSED IRRIGATION PLAN TO THE LANDSCAPE ARCHITECT OR OWNER'S REPRESENTATIVE FOR GENERAL REVIEW AND ACCEPTANCE. PROPOSED IRRIGATION SYSTEM SHOULD UTILIZE ANY RECLAIMED/REUSED/GRAY WATER PUBLIC SYSTEMS IF
- ACCESSIBLE. 4. SHOULD RECLAIMED/REUSED/GRAY WATER NOT BE AVAILABLE, BELOW GRADE CISTERNS OR ON-SITE RETENTION PONDS SHOULD BE CONSIDERED FOR AN IRRIGATION WATER SOURCE. USE OF PUBLIC POTABLE WATER SOURCE SHOULD BE A LAST CASE RESORT AND DESIGNED AS A TEMPORARY IRRIGATION SYSTEM
- UTILIZED TO ESTABLISHED PROPOSED PLANT MATERIAL THROUGH ITS FIRST TWO YEARS OF GROWTH. PROPOSED IRRIGATION DESIGN SHOULD UTILIZE WATER EFFICIENT DESIGN TECHNIQUES SUCH AS THE USE OF DRIP IRRIGATION, MOISTURE SENSORS AND RAIN SENSORS TO MAXIMIZE WATER EFFICIENCY.
- IRRIGATION CONTRACTOR IS RESPONSIBLE FOR INSTALLING AN IRRIGATION SYSTEM THAT FUNCTIONS PROPERLY PER THE INTENT OF THE DESIGN. SHOULD THE IRRIGATION CONTRACTOR SEE A FLAW IN THE PROPOSED DESIGN AND/OR FINDS A PROBLEM IN THE FIELD THAT WILL NEGATIVELY AFFECT THE PERFORMANCE OF THE PROPOSED IRRIGATION SYSTEM, THE SAID CONTRACTOR IS RESPONSIBLE FOR INFORMING THE LANDSCAPE ARCHITECT/OWNER'S REPRESENTATIVE PRIOR TO INSTALLING OR ORDERING MATERIAL FOR THE PROPOSED IRRIGATION SYSTEM
- 7. IRRIGATION PLANS TO BE SUBMITTED TO BRAD BARBEE AS PART OF THE SUBMITTAL, PRIOR TO ISSUANCE OF




FOR DESIGN **REVIEW ONLY**

900

OVERALL LANDSCAPE PLAN

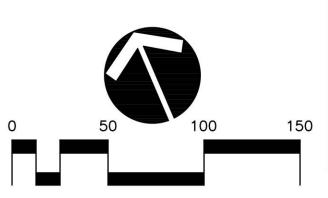
POLE BASE/PARKING LOT LIGHT FIXTURE DETAIL NO SCALE

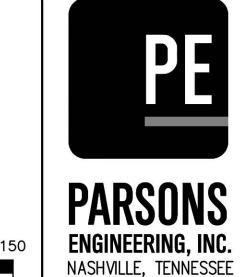
FIXTURE "A" & "B" DETAIL

	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
$0.0 \ 0.0 $		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.1, 0.1 0.2 0.2 0.3 0.2 0.2 0.2 0.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.1 0.2 0/2 0.4 0.4 0.4 0.3 0.3 0.3	.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MARIO MARIO	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.1 0.1 0.2 0.3 0.5 0.7 Be 1.7 1.4 1.1 0.7 0.6 0.5 0.5 0.5 0.4 0.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	a bright.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	- Cons	0.1 0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.1 0.1
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		10 Total
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1		**************************************
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		.4 0.8 1.3 0.0 0.3 0.4 0.7 1.5 1.8 1.6 1.4 1.2 0.9 0.0 0.2 0.1 0.1 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		.4 0.7 1.4 0.0 0.4 0.4 0.9 1.2 1.7 2.0 2.0 1.7 1.3 0.8 0.5 0.3 0.2 0.1 0.1 0.1 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00 0.0 0.0 / 01 01 0.2 0.3 0.5 0.8 0.9 0.7 0.7 0.8 1.1 1.1 0.8 8 0.3 0.4 0.4 0.3 0.3 0	.4 0.6 1.0 0.0 0.0 0.9 0.7 0.7 0.9 0 1.4 2.4 1.7 1.2 0.6 0.4 0.2 0.1 0.1 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.1 0.0 0.4 0.5 0.6 0.6 0.6 0.6 0.8 1.3 1.6 1.7 0.5 0.6 0.5 0.4 0.3 0	.3 0.5 0.8 1 1.7 1.0/0.5/0.7 0.3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5	.4 0.4 0.5 1.9 0.5 0.9 0.4 0.3 70.0 0.5 0.2 0.2 0.1 0.1 0.1 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	.5 0.4 6 1,4/1.2/0.8 0.4 03 / //0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	.\$ 0.9 1.6 \qquad
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		.6 0.8 0.7 0.5 0.3 6 7 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5 0.6 0.5 0.4 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.5 0.3 0.2 0.1 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.000	0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
0.0 0.1 0.1 0.1 0.2 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.9 0.9 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
0.0 0.1 0.1 0.2 0.3 0.4 0.4 0.4 0.5 0.5 0.4 0.4 0.5 0.5 0.4 0.4 0.5 0.5 0.5 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1.2 1.6 1.3 1.1 0.9 0.1 0.1 0.0 0.0 0.1 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.1 0/1 0/2 4 0.6 0.8 0.8 0.9 0.8 0.8 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.8 0.8 0.7 0.6 0.5 0.4 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.7 1.3 1.6 1.7 1.4 1.7 1.8 1.8 1.3 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.0 0.8 0.6 0.6	11 1.5 1.8 1.6 1.3 1.0 0.7 0.1 0.2 0.2 0.1 0.1 0.1	.0 0.0 0.0 0.0 0,0 0,0 0.0 0.0 0.0 0.0 0
0.0 0.1 0.1 0.1 0.2 4 0.7 1.3 1.5 1.4 1.3 1.3 1.1 1.0 0.9 0.9 1.1 1.2 1.2 1.2 1.3 1.2 1.1 0.7 0.5 0.3 0.2 0.2 0.1 0.2 0 0.3 0.5 1.0 1.0 0.9 Sp. 1.2 1.3 1.3 1.7 1.7 1.7 1.7 1.3 1.9 1.7 1.4 0.9 0.6 0.5	0.6 0.8 RO 1.1 1.7 1.5 1.1 0.7 0.4 0.3 0.2 0.2 0.1 01	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
$0.0\ 0.0\ 0.1\ 0.1\ 0.2\ 3\ 0.6\ 1.1\ 1.3\ 1.22\ B$ $1.8\ 1.6\ 1.5\ 1.1\ 1.1\ 1.5$ $1.7\ 1.8\ 1.5\ 1.5\ 1.4\ 0.7\ 0.4\ 0.3\ 0.2\ 0.1\ 0.1\ 0.1\ 0.2\ 0.3\ 0.4\ 0.5\ 0.4\ 0.5\ 0.4\ 0.5\ 0.4\ 0.5\ 0.4\ 0.5\ 0.4\ 0.5$	0.5 0.5 0.3 0.5 1.4 1.5 1.2 0.7 0.5 0.3 0.3 0.3 0.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0/0 0.1 0/1 0.1 0.2 0.4 0.5 0.6 0.4 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.8 0.9 0.8 0.6 0.4 0.4	0.3 0.2 0.4 0.5 0.8 0.7 0.5 0.4 0.3 0.3 0.3 0.4 0.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.4 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.3 0.3 0.4 0.4 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.0 0.5 0.5 0.6 1.0 1.1 0.9 0.6 0.4 0.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 do 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
0.0 0.0 0.7 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 6.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.6 1.0 1.4 1.2 1.1 0.9	.0 0.0 0.0 0.0 00 0.0 0.0 0.0 0.0 0.0 0
00 00 00 00 0.0 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.3 0.5 1.0 1.5 1.7 1.6 1.3 1.1 0.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
70.9 0.9 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1	0.0 6.1 6.2 0.1 6.1 0.1 0.2 0.2 0.4 0.6 0.9 B 1.6 1.5 1.3 0.9 0.7 0.6 0.3 0.2 0.1 0.0 0.0 0	0.000,000,000,000,000,000,000,000,000,0
	0.0 0.0	.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
	0.07 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.6 0.8 0.8 0.8 0.7 0.7 0.6 0.4 0.0 0.2 0.1 0.2 0.2 0.2 0.5 0.6 0.7 0.9 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0000	0.0 0.1 0.1 0.3 0.5 0.6 0.8 1.4 / 1.5 27	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0,1 0,1 0.1 0.3 0.4 0.8 1.2 1.7 1.0 70	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.3 0.4	
0.0000000000000000000000000000000000000	0.4 0.5 0.5 0.5 0.5	.0 0 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
		.1 00/0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	\$10 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.9 1.4 1.4 0.9 3 0.4 0.5 0.5 0.4 0.1/0.1 0.0 / 0.4 0.5 0.7 1.2 2.0 1.7 1.1 0.7 0.4 0.3 0.3 0.2 0.1 0	20 /1 /0.0 0.0 0.0 0.0 \(\text{9.0} \) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.9 1.4 1.4 0.9 3 0.4 0.5 0.5 0.4 0.1/0.1 0.0 / 0.4 0.5 0.7 1.2 2.0 1.7 1.1 0.7 0.4 0.3 0.3 0.2 0.1 0	0,1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.9 1.4 1.6 1.6 0.8 0.8 0.8 0.7 0.4 0.3 0.2 0.2 0.2 0.2 0.5 0.6 0.8 1.2 1.7 2.0 1.3 0.8 0.5 0.4 0.3 0.3 0.2 0.1 0 0.7 0.9 1.2 1.4 1.7 1.9 1.5 1.0 0.6 0.4 0.3 0.2 0.2 0.2 0.3 0.4 0.5 0.6 0.8 1.1 1.4 1.9 1.8 1.3 B 0.5 0.5 0.5 0.4 0.3 0.3 0.2 0.2 0.3 0.4 0.5 0.6 0.8 1.1 1.4 1.9 1.8 1.3 B 0.5 0.5 0.5 0.4 0.3 0.3 0.3 0.3 0.4 0.5 0.6 0.8 1.1 1.4 1.9 1.8 1.3 B 0.5 0.5 0.5 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.9 1.4 1.4 0.9 8 0.4 0.5 0.5 0.4 0.1 0.1 0.0 0.4 0.5 0.7 1.2 2.0 1.7 1.1 0.7 0.4 0.3 0.3 0.2 0.1 0 0.9 1.4 1.6 1.6 0.8 0.8 0.8 0.8 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.5 0.6 0.8 1.2 1.7 2.0 1.3 0.8 0.5 0.4 0.3 0.3 0.2 0.2 0.7 0.9 1.2 1.4 1.7 1.9 1.5 1.0 0.6 0.4 0.3 0.2 0.2 0.3 0.4 0.5 0.6 0.8 1.1 1.4 1.9 1.8 1.3 B 0.5 0.5 0.4 0.7 0.7 0.8 1.0 1.3 1.4 1.5 1.1 0.6 0.4 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.8 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.8 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.2 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.8 1.2 1.2 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.8 1.2 1.2 1.2 1.4 1.7 1.5 1.2 1.2 1.4 1.7 1.5 1.2 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.2 1.4 1.7 1.5 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.2 1.4 1.7 1.2 1.4 1.7 1.2 1.2 1.4 1.7 1.	2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.9 1.4 1.4 0.9 8 0.4 0.5 0.5 0.4 0.1 0.1 0.0 0.4 0.5 0.7 1.2 2.0 1.7 1.1 0.7 0.4 0.3 0.3 0.2 0.1 0 0.9 1.4 1.6 1.6 0.8 0.8 0.8 0.8 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.5 0.6 0.8 1.2 1.7 2.0 1.3 0.8 0.5 0.4 0.3 0.3 0.2 0.2 0.7 0.9 1.2 1.4 1.7 1.9 1.5 1.0 0.6 0.4 0.3 0.2 0.2 0.3 0.4 0.5 0.6 0.8 1.1 1.4 1.9 1.8 1.3 B 0.5 0.5 0.4 0.7 0.7 0.8 1.0 1.3 1.4 1.5 1.1 0.6 0.4 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.8 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.8 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.2 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.8 1.2 1.2 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.8 1.2 1.2 1.2 1.4 1.7 1.5 1.2 1.2 1.4 1.7 1.5 1.2 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.2 1.4 1.7 1.5 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.2 1.4 1.7 1.2 1.4 1.7 1.2 1.2 1.4 1.7 1.	2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.9 1.4 1.4 0.9 8 0.4 0.5 0.5 0.4 0.1 0.1 0.0 0.4 0.5 0.7 1.2 2.0 1.7 1.1 0.7 0.4 0.3 0.3 0.2 0.1 0 0.9 1.4 1.6 1.6 0.8 0.8 0.8 0.8 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.5 0.6 0.8 1.2 1.7 2.0 1.3 0.8 0.5 0.4 0.3 0.3 0.2 0.2 0.7 0.9 1.2 1.4 1.7 1.9 1.5 1.0 0.6 0.4 0.3 0.2 0.2 0.3 0.4 0.5 0.6 0.8 1.1 1.4 1.9 1.8 1.3 B 0.5 0.5 0.4 0.7 0.7 0.8 1.0 1.3 1.4 1.5 1.1 0.6 0.4 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.8 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.8 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.2 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.8 1.2 1.2 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.8 1.2 1.2 1.2 1.4 1.7 1.5 1.2 1.2 1.4 1.7 1.5 1.2 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.2 1.4 1.7 1.5 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.2 1.4 1.7 1.2 1.4 1.7 1.2 1.2 1.4 1.7 1.	2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.9 1.4 1.4 0.9 8 0.4 0.5 0.5 0.4 0.1 0.1 0.0 0.4 0.5 0.7 1.2 2.0 1.7 1.1 0.7 0.4 0.3 0.3 0.2 0.1 0 0.9 1.4 1.6 1.6 0.8 0.8 0.8 0.8 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.5 0.6 0.8 1.2 1.7 2.0 1.3 0.8 0.5 0.4 0.3 0.3 0.2 0.2 0.7 0.9 1.2 1.4 1.7 1.9 1.5 1.0 0.6 0.4 0.3 0.2 0.2 0.3 0.4 0.5 0.6 0.8 1.1 1.4 1.9 1.8 1.3 B 0.5 0.5 0.4 0.7 0.7 0.8 1.0 1.3 1.4 1.5 1.1 0.6 0.4 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.8 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 2 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.8 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.7 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.6 0.8 1.2 1.2 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.8 1.2 1.2 1.2 1.4 1.7 1.5 1.1 0.8 0.4 0.5 0.8 1.2 1.2 1.2 1.4 1.7 1.5 1.2 1.2 1.4 1.7 1.5 1.2 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.2 1.4 1.7 1.5 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.5 1.2 1.4 1.7 1.2 1.4 1.7 1.2 1.4 1.7 1.2 1.2 1.4 1.7 1.	2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.9 1.4 1.4 0.9 8 0.4 0.5 0.5 0.4 0.1 0.1 0.0 0.4 0.5 0.7 1.2 2.0 1.7 1.1 0.7 0.4 0.3 0.3 0.2 0.1 0 0.9 1.4 1.6 1.6 0.8 0.8 0.8 0.8 0.7 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.5 0.6 0.8 1.2 1.7 2.0 1.3 0.8 0.5 0.4 0.3 0.3 0.2 0.2 0.7 0.9 1.2 1.4 1.7 1.9 1.5 1.0 0.6 0.4 0.3 0.2 0.2 0.3 0.4 0.5 0.6 0.8 1.1 1.4 1.9 1.8 1.3 8 0.5 0.5 0.5 0.5 0.7 0.7 0.7 0.8 1.0 1.3 1.4 1.5 1.1 0.6 0.4 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2.1 1 0.8 0.4 0.6 0.5 0.6 0.7 0.9 1.0 1.0 1.0 0.9 0.9 1.0 1.1 1.3 1.4 1.6 0.9 1.5 0.4 0.4 0.4 0.4 0.6 0.9 1.1 1.1 1.1 0.9 0.6 0.5 0.4 0.3 0.3 0.4 0.5 0.8 1.5 1.6 1.3 1.1 1.0 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.3 0.3 0.4 0.5 0.9 1.6 1.6 1.4 1.2 1.0 0.7 0.4 0.4 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.3 0.3 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.3 0.3 0.4 0.5 0.5 0.6 0.7 1.1 1.1 0.7 0.5 0.4 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.4 0.5 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.4 0.4 0.5 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.4 0.4 0.5 0.5 0.6 0.5 0.5 0.6 0.5 0.5 0.6 0.5 0.	0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.9 1.4 1.4 0.9 8 0.4 0.5 0.5 0.4 0.1 0.1 0.0 0.4 0.5 0.7 1.2 2.0 1.7 1.1 0.7 0.4 0.3 0.3 0.2 0.1 0 0.9 1.4 1.6 1.6 0.8 0.8 0.8 0.8 0.7 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.5 0.6 0.8 1.2 1.7 2.0 1.3 0.8 0.5 0.4 0.3 0.3 0.2 0.7 0.7 0.9 1.2 1.4 1.7 1.9 1.5 1.0 0.6 0.4 0.3 0.2 0.2 0.3 0.4 0.5 0.6 0.8 1.1 1.4 1.9 1.8 1.3 8 0.5 0.5 0.5 0.4 0.7 0.7 0.7 0.8 1.0 1.3 1.4 1.5 1.1 0.6 0.4 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2.1 1 0.8 0.4 0.6 0.5 0.6 0.7 0.9 1.0 1.0 1.0 0.9 0.9 1.0 1.1 1.3 1.4 1.6 0.9 1.5 0 0.4 0.4 0.4 0.6 0.9 1.1 1.1 1.1 0.9 0.6 0.5 0.4 0.3 0.3 0.4 0.5 0.9 1.5 1.6 1.3 1.1 1.0 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.9 1.4 1.4 0.9 8 0.4 0.5 0.5 0.4 0.1 0.1 0.0 0.4 0.5 0.7 1.2 2.0 1.7 1.1 0.7 0.4 0.3 0.3 0.2 0.1 0 0.9 1.4 1.6 1.6 0.8 0.8 0.8 0.8 0.7 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.6 0.8 1.2 1.7 2.0 1.3 0.8 0.5 0.4 0.3 0.3 0.2 0.7 0.9 1.2 1.4 1.7 1.9 1.5 1.0 0.6 0.4 0.3 0.2 0.2 0.3 0.4 0.5 0.6 0.8 1.1 1.4 1.9 1.8 1.3 8 0.5 0.5 0.5 0.5 0.5 0.7 0.7 0.7 0.8 1.0 1.3 1.4 1.5 1.1 0.6 0.4 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2.1 1.0 8 0.9 0.6 0.5 0.6 0.7 0.9 1.0 1.0 1.0 0.9 0.9 1.0 1.1 1.3 1.4 1.6 0.9 1.5 0 0.4 0.4 0.4 0.6 0.9 1.1 1.1 1.1 0.9 0.6 0.5 0.4 0.3 0.3 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.3 1.1 1.0 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.9 1.4 1.4 0.9 8 0.4 0.5 0.5 0.4 0.1 0.1 0.0 0.4 0.5 0.7 1.2 2.0 1.7 1.1 0.7 0.4 0.3 0.3 0.2 0.1 0 0.9 1.4 1.6 1.6 0.8 0.8 0.8 0.8 0.7 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.6 0.8 1.2 1.7 2.0 1.3 0.8 0.5 0.4 0.3 0.3 0.3 0.2 0.7 0.7 0.9 1.2 1.4 1.7 1.9 1.5 1.0 0.6 0.4 0.3 0.3 0.2 0.2 0.3 0.4 0.5 0.6 0.8 1.1 1.4 1.9 1.8 1.3 8 0.5 0.5 0.5 0.5 0.5 0.7 0.7 0.7 0.8 1.0 1.3 1.4 1.5 1.1 0.6 0.4 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2.1 1 0.8 0.4 0.6 0.5 0.6 0.7 0.9 1.0 1.0 0.9 0.7 0.5 0.4 0.3 0.3 0.4 0.6 0.8 1.0 1.0 1.0 0.9 0.9 1.0 1.1 3 1.4 1.6 0.9 0.5 0.4 0.4 0.4 0.4 0.4 0.5 0.9 1.5 1.6 1.3 1.1 1.0 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.5 0.4 0.3 0.3 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.3 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.3 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.3 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.3 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.3 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.3 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.5 0.4 0.4 0.3 0.3 0.4 0.5 0.5 0.6 0.4 0.3 0.3 0.4 0.6 0.5 0.4 0.5 0.5 0.6 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.9 1.4 1.4 0.9 8 0.4 0.5 0.5 0.4 0.1 0.1 0.0 0.4 0.5 0.7 1.2 2.0 1.7 1.1 0.7 0.4 0.3 0.3 0.2 0.1 0.9 1.4 1.6 1.6 0.8 0.8 0.8 0.7 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.5 0.6 0.8 1.2 1.7 2.0 1.3 0.8 0.5 0.4 0.3 0.3 0.2 0.2 0.7 0.9 1.2 1.4 1.7 1.9 1.5 1.0 0.6 0.4 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2.1 1 0.8 0.4 0.5 0.6 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2.1 1 0.8 0.4 0.6 0.5 0.6 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.7 1.5 2.1 1 0.8 0.4 0.6 0.5 0.6 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.1 1.1 0.9 0.6 0.5 0.4 0.3 0.3 0.4 0.6 0.8 1.0 1.0 1.0 0.9 0.9 1.0 1.1 1.3 4.4 1.6 0.9 1.5 0.4 0.4 0.4 0.4 0.4 0.5 0.9 1.6 1.6 1.4 1.2 1.0 0.7 0.4 0.4 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.3 0.3 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.3 0.3 0.4 0.5 0.5 0.6 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.3 0.3 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.3 0.3 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.3 0.3 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.3 0.3 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.3 0.3 0.3 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.3 0.3 0.3 0.4 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.3 0.3 0.3 0.4 0.5 0.5 0.5 0.5 0.4 0.4 0.5 0.5 0.8 1.2 1.9 1.5 1.6 1.4 1.2 0.9 0.7 0.6 0.6 0.5 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.9 1.4 1.4 0.9 6 0.4 0.5 0.5 0.4 0.1 0.1 0.0 0.4 0.5 0.7 1.2 2.0 1/7 1.1 0.7 0.4 0.3 0.3 0.2 0.1 0 0.9 1.4 1.6 1.6 0.8 0.8 0.8 0.7 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.6 0.8 1.2 1.7 2.0 1.3 0.8 0.5 0.4 0.3 0.3 0.3 0.2 0.7 0.9 1.2 1.4 1.7 1.9 1.5 1.0 0.6 0.4 0.3 0.2 0.2 0.3 0.4 0.5 0.6 0.8 1.1 1.4 1.9 1.8 1.3 8 0.5 0.5 0.5 0.4 0.3 0.3 0.7 0.7 0.8 1.0 1.3 1.4 1.5 1.1 0.6 0.4 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1/4 1/7 1.3 2.1 1 0.8 0.4 0.6 0.5 0.6 0.5 0.6 0.7 0.9 1.0 1.2 1/4 1/7 1.3 2.1 1 0.8 0.4 0.6 0.5 0.6 0.5 0.6 0.7 0.9 1.0 1.2 1/4 1/7 1.3 2.1 1 0.8 0.4 0.6 0.5 0.6 0.5 0.6 0.7 0.9 1.0 1.1 1.1 1.1 0.9 0.6 0.5 0.4 0.3 0.3 0.4 0.6 0.8 1.0 1.0 1.0 0.9 0.9 1.0 1.1 1.3 1.4 1.6 0.9 1.5 0.4 0.4 0.4 0.4 0.4 0.5 0.9 1.5 1.6 1.3 1.1 1.0 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Statistics		377				
Description	Avg	Max	Min	Max/Min	Avg/Min	
Calc Zone #1	0.1 fc	2.4 fc	0.0 fc	N/A	N/A	
Parking Lot #1	1.0 fc	2.0 fc	0.2 fc	10.0:1	5.0:1	
Parking Lot #2	0.8 fc	2.4 fc	0.2 fc	12.0:1	4.0:1	
Parking Lot #3	0.9 fc	2.2 fc	0.2 fc	11.0:1	4.5:1	
Parking Lot #4	1.0 fc	1.8 fc	0.4 fc	4.5:1	2.5:1	

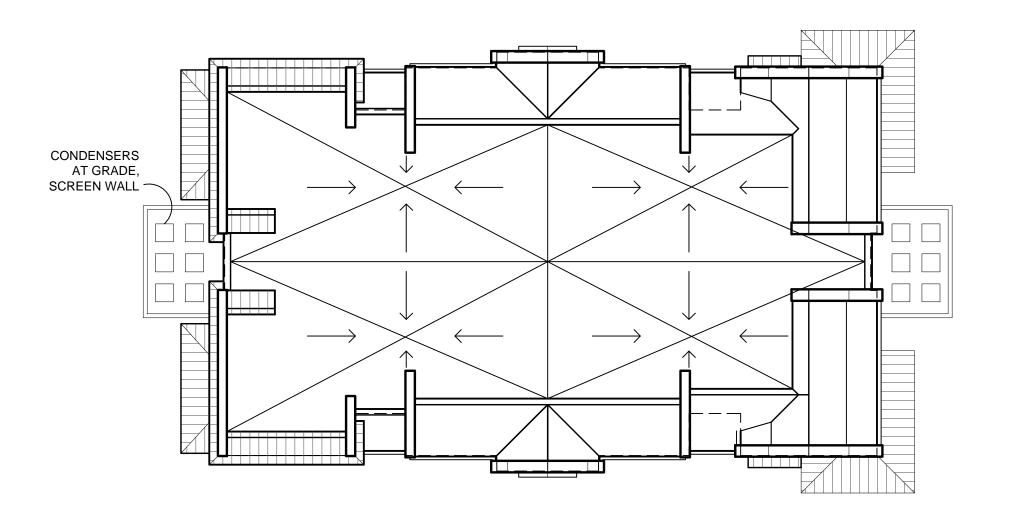
Schedule												
Symbol	Label	Quantity	Manufacturer	Catalog Number	Description	Lamp	Number Lamps	Filename	Lumens Per Lamp	Light Loss Factor	Wattage	Mounting Height
0.0	А	2	Holophane	GVD2 P40 40K AH 5 N	GranVille II LED, LED Package 40, 90W, 4000K, 347-480V, Type 5 distribution, No trim	LED COB	1	GVD2_P40_40K_AH _5_N.ies	9299	0.91	180	14'-0"
<u></u>	В	22	Holophane	GVD2 P40 40K AH 3 N GVDHSS90	GranVille II LED, LED Package 40, 90W, 4000K, 347-480V, Type 3 distribution, No trim, House Side Shield 90 Degree	LED COB	1	GVD2_P40_40K_AH _3_N_GVDHSS90.i es	8702	0.91	90	14'-0"

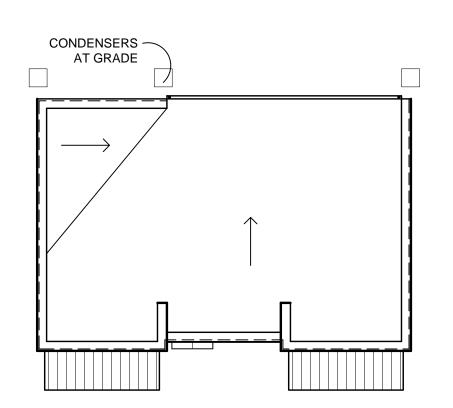

SITE PHOTOMETRIC PLAN SCALE: 1"=50'-0"


SITE PHOTOMETRIC NOTES

1. CALCULATIONS SHOWN REPRESENT MAINTAINED LIGHTING LEVELS IN FOOTCANDLES AT GRADE WITH A TOTAL LIGHT LOSS FACTOR OF 0.91. CALCULATIONS DO NOT INCLUDE CONTRIBUTIONS FROM OTHER LIGHT SOURCES.

2. CIVIL BASE PLAN AS PROVIDED TO PARSONS ENGINEERING, INC. SHOWED NO OVERHEAD UTILITIES. THE CIVIL ENGINEER SHALL VERIFY THAT THERE ARE NO CONFLICTS WITH EXISTING OR PROPOSED UTILITY LINES OR EASEMENTS.

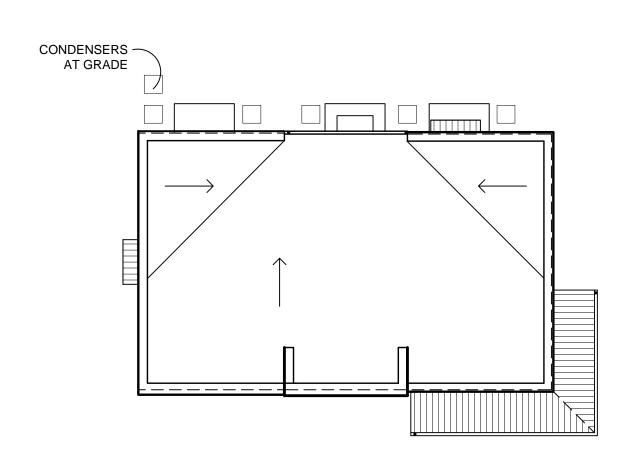

3. THESE CALCULATIONS HAVE BEEN GENERATED FROM MAUFACTURER SUPPLIED PHOTOMETRIC FILES. PARSONS ENGINEERING, INC. HAS MADE A REASONABLE ATTEMPT TO OBTAIN THE MOST CURRENT PHOTOMETRIC REPORT. PARSONS ENGINEERING, INC. IS NOT RESPONSIBLE FOR ERRANT RESULTS DUE TO MANUFACTURERS' QUALITY CONTROL OR DESIGN CHANGES.



PHOTOMETRIC PARSONSENGINEERING.COM

PLAN

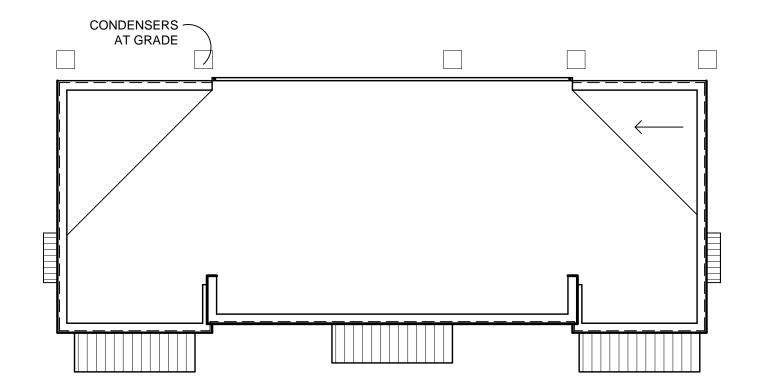


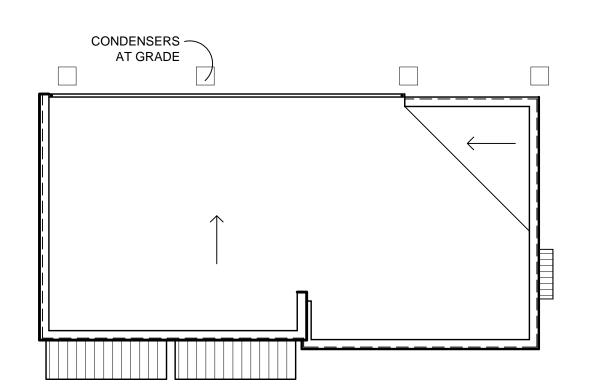


Condo 1 - Roof Plan

1/16" = 1'-0"

 $\underbrace{2}_{1/16" = 1'-0"}$ Townhome 1 - Roof Plan





 $\underbrace{3}_{1/16" = 1'-0"}$ Townhome 2 - Roof Plan

Mixed Use Building 1 - Roof Plan

1/16" = 1'-0"

5 Live/work Building 1 - Roof Plan

1/16" = 1'-0"

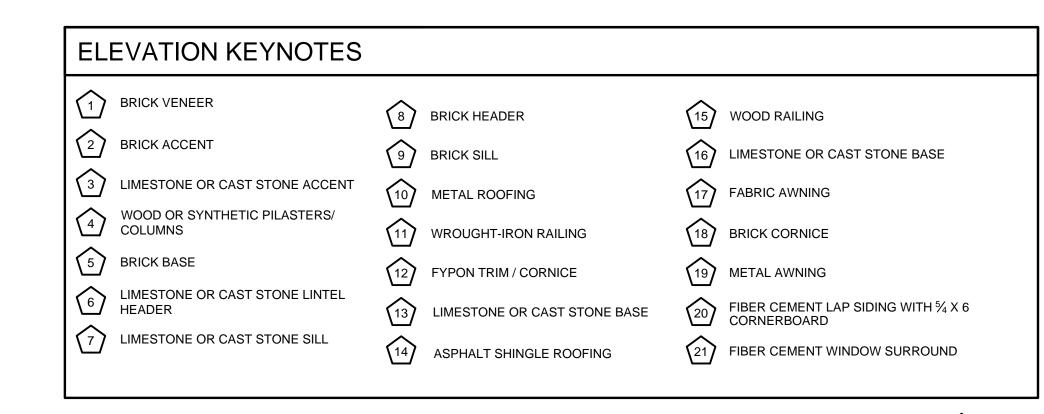
6 Live/work Building 2 - Roof Plan

1/16" = 1'-0"

Smith Gee Studio, LLC 209 10th Avenue South, Suite 425 Nashville, Tennessee 37203 615/739-5555p info@smithgeestudio.com

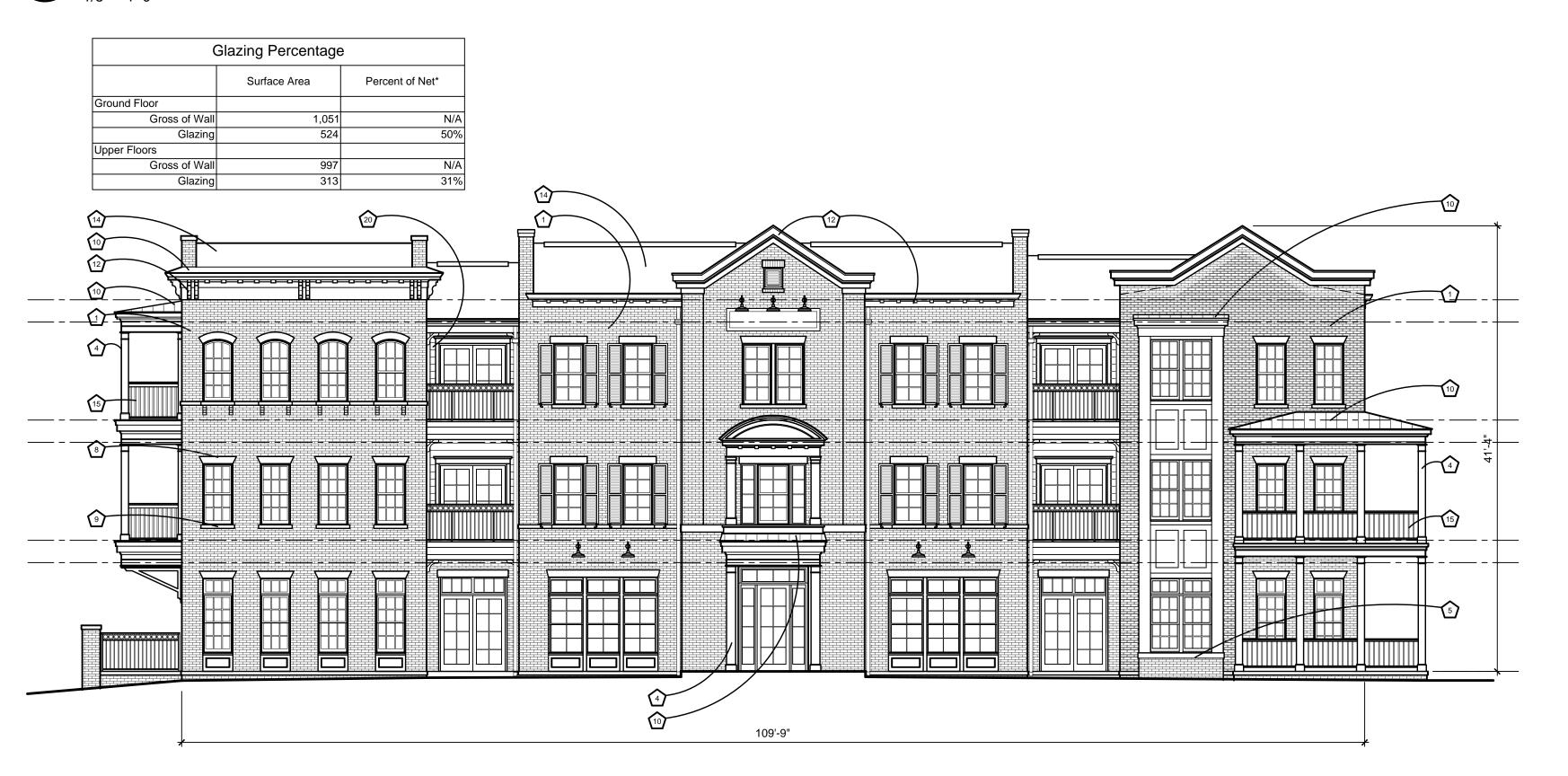
Set Type:

1 10/12/2018 DRC Submittal


SGS Contact: Dallas (SGS Project Number: 1.

For Planning Commission Review Only

Copyright 2018 by Smith Gee Studio, LLC: All drawings and text contained in these drawings are the property of Smith Gee Studio, LLC and cannot be used without expressed written permission. Do not scale drawings. If any dimensions are needed but not shown, consult the architect.


Drawing:

Condo 1 - Street Elevation

Condo 1 - Street Elevation 1/8" = 1'-0"

Condo 1 - Courtyard Elevation

1/8" = 1'-0"

 $\underbrace{4}_{1/8" = 1'-0"}$ Condo 1 - Street Elevation

Smith Gee Studio, LLC 209 10th Avenue South, Suite 425 Nashville, Tennessee 37203 615/739-5555p info@smithgeestudio.com

Set Type:

1 10/12/2018 DRC Submittal

SGS Contact: Dallas Caudle SGS Project Number: 18045.00

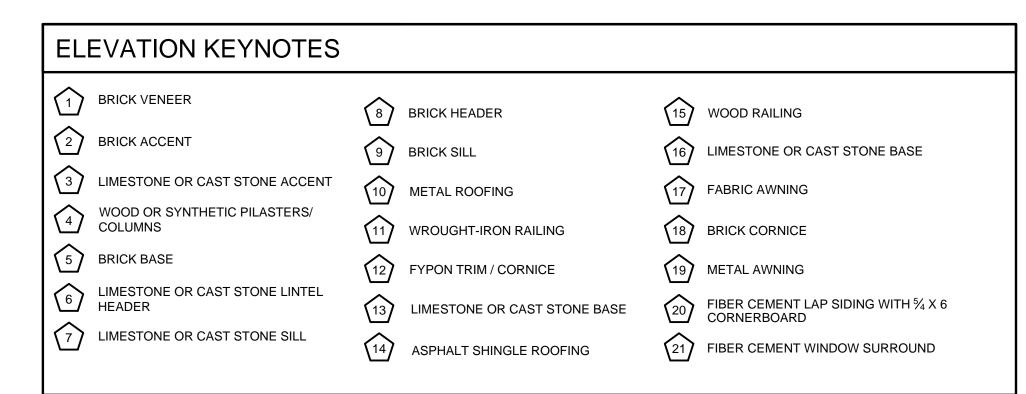
ject Contact: Regent Hor Phone: 615/333-9000

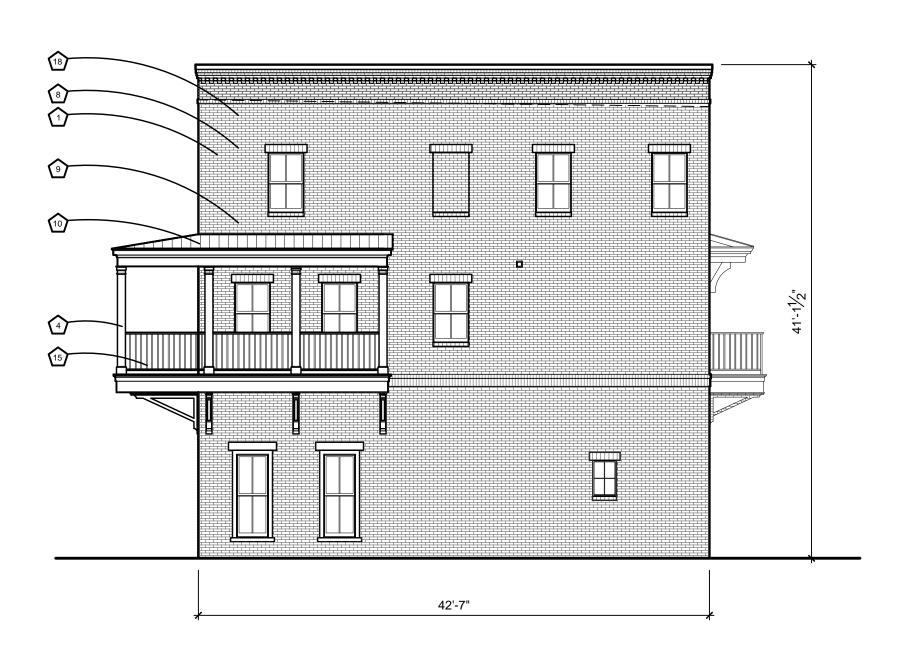
Proje Tollg son's

For Planning Commission Review Only

Copyright 2018 by Smith Gee Studio, LLC: All drawings and text contained in these drawings are the property of Smith Gee Studio, LLC and cannot be used without expressed written permission. Do not scale drawings. If any dimensions are needed but not shown, consult the architect.

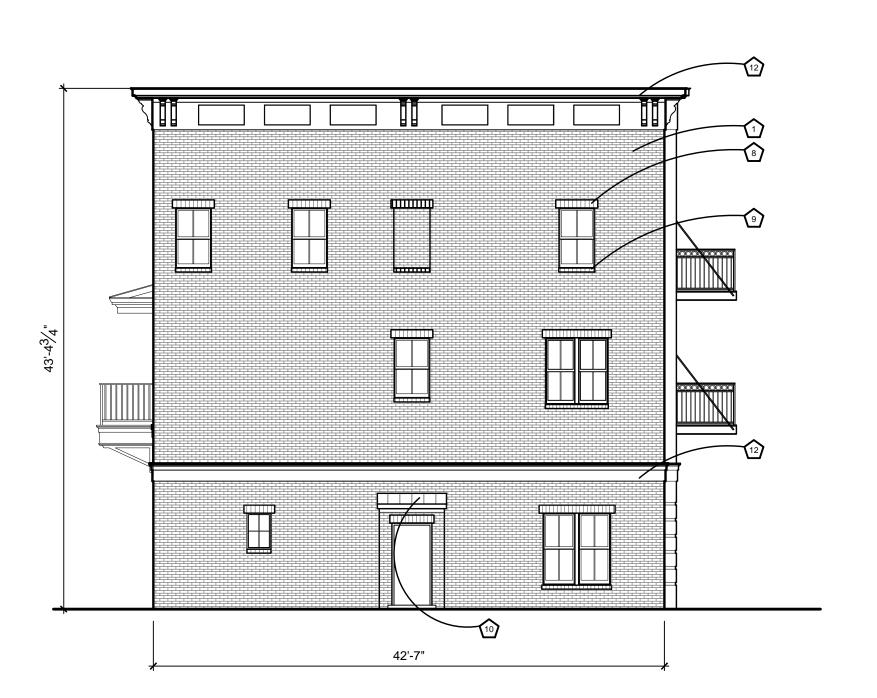
Drawing:


Glazing Percentage			
Surface Area Percent of Ne			
Ground Floor			
Gross of Wall	911	N/A	
Glazing	445	49%	
Upper Floors			
Gross of Wall	676	N/A	
Glazing	253	37%	



Mixed Use #1 - Street Elevation

1/8" = 1'-0"



Mixed Use #1 - Side Elevation

1/8" = 1'-0"

Mixed Use #1 - Side Elevation

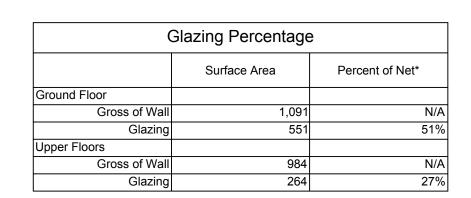
1/8" = 1'-0"

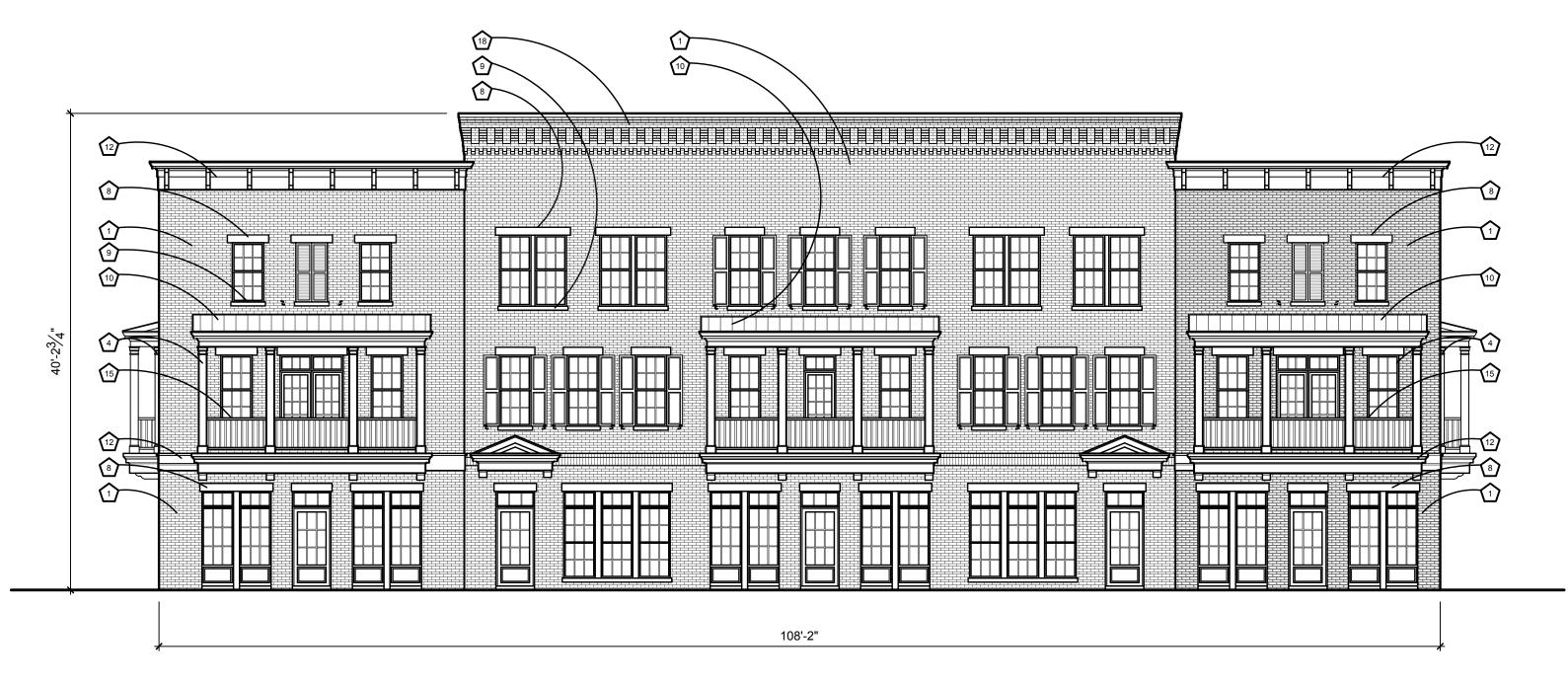
Smith Gee Studio, LLC 209 10th Avenue South, Suite 425 Nashville, Tennessee 37203

> Set Type: No: Date:

1 10/12/2018 DRC Submittal

615/739-5555p

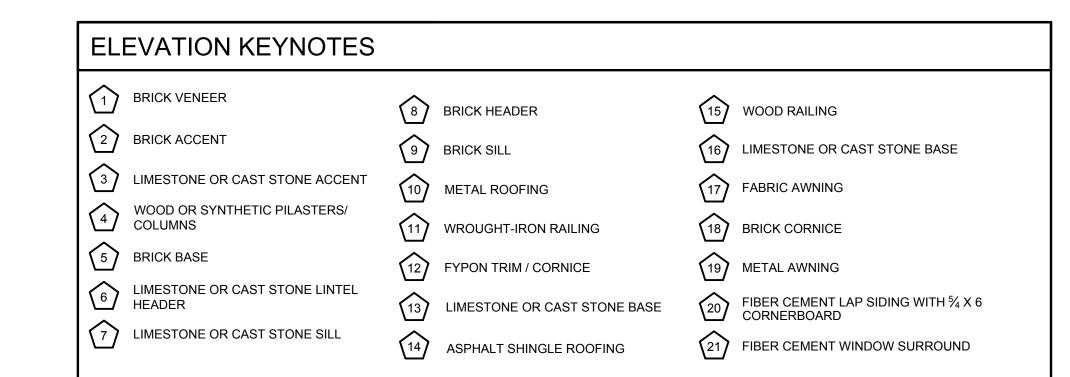

info@smithgeestudio.com

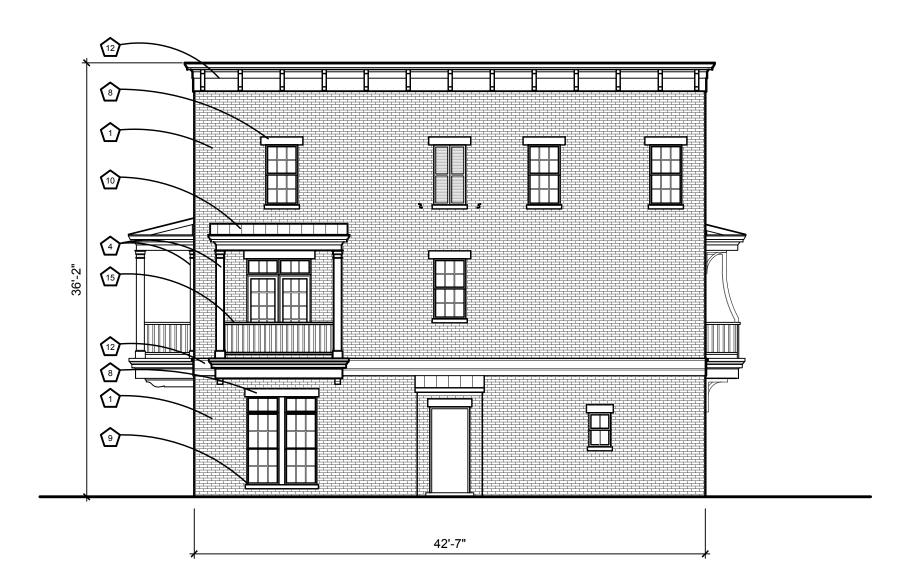

ject Contact: Regent Hor Phone: 615/333-9000 SGS Contact: Dallas (SGS Project Number: 1

For Planning Commission Review Only

Copyright 2018 by Smith Gee Studio, LLC: All drawings and text contained in these drawings are the property of Smith Gee Studio, LLC and cannot be used without expressed written permission. Do not scale drawings. If any dimensions are needed but not shown, consult the architect.

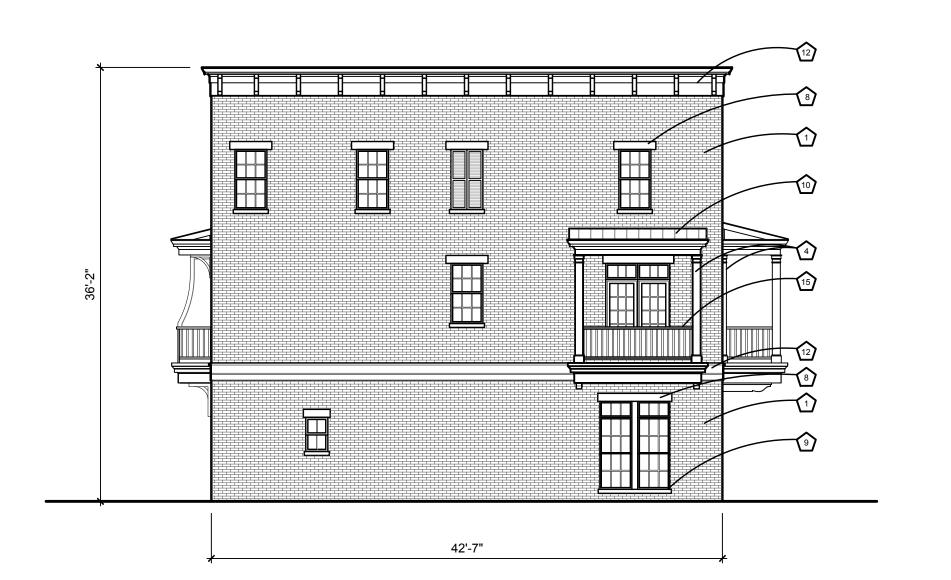
Drawing:





Live/ Work #1 Street Elevation

1/8" = 1'-0"


104'-9"

2 Live/ Work #1 Side Elevation

1/8" = 1'-0"

Live/ Work #1 Side Elevation

Smith Gee Studio, LLC 209 10th Avenue South, Suite 425 Nashville, Tennessee 37203 615/739-5555p info@smithgeestudio.com

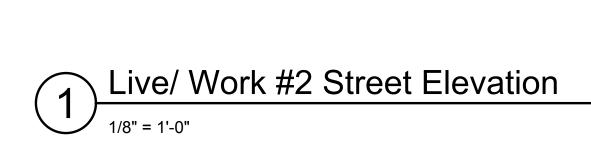
Set Type:

1 10/12/2018 DRC Submittal

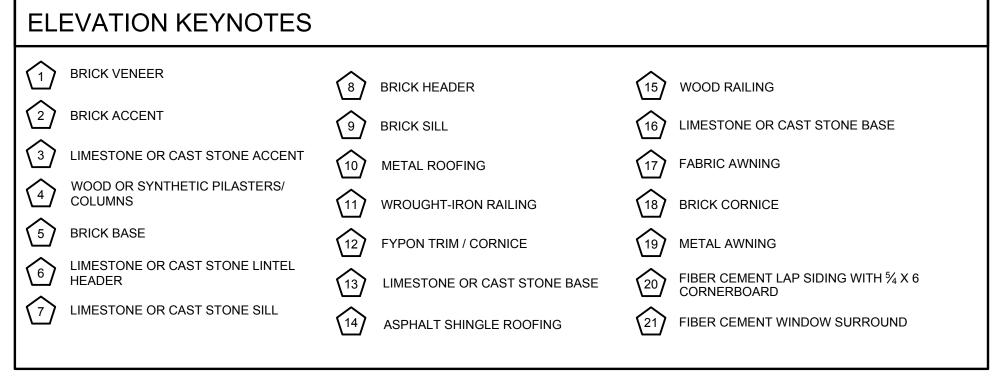
ject Contact: Regent Hor Phone: 615/333-9000

SGS Contact: Dallas (SGS Project Number: 1

ect Address: gate Village Station, TN


For Planning Commission Review Only

Copyright 2018 by Smith Gee Studio, LLC: All drawings and text contained in these drawings are the property of Smith Gee Studio, LLC and cannot be used without expressed written permission. Do not scale drawings. If any dimensions are needed but not shown, consult the architect.


Drawing:

Glazing Percentage			
Surface Area Percent of Ne			
Ground Floor			
Gross of Wall	968	N/A	
Glazing	492	51%	
Upper Floors			
Gross of Wall	1849	N/A	
Glazing	502	27%	

2 Live/ Work #2 Side Elevation

1/8" = 1'-0"

Live/ Work #2 Side Elevation

Smith Gee Studio, LLC 209 10th Avenue South, Suite 425 Nashville, Tennessee 37203

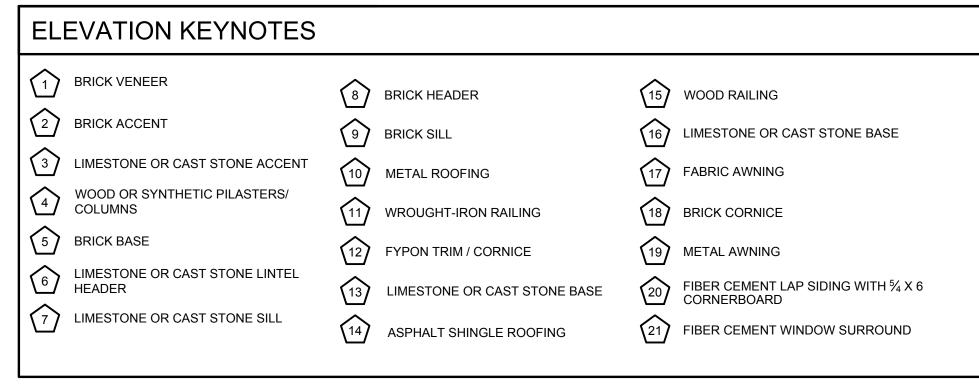
> Set Type: No: Date:

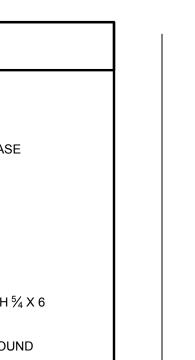
1 10/12/2018 DRC Submittal

615/739-5555p

info@smithgeestudio.com

ject Contact: Regent Hor Phone: 615/333-9000


SGS Contact: Dallas (SGS Project Number: 1


ect Address: gate Village s Station, TN

For Planning Commission Review Only

Copyright 2018 by Smith Gee Studio, LLC: All drawings and text contained in these drawings are the property of Smith Gee Studio, LLC and cannot be used without expressed written permission. Do not scale drawings. If any dimensions are needed but not shown, consult the architect.

Drawing:

Set Type: No: Date:

1 10/12/2018 DRC Submittal

Smith Gee Studio, LLC

209 10th Avenue South, Suite 425 Nashville, Tennessee 37203

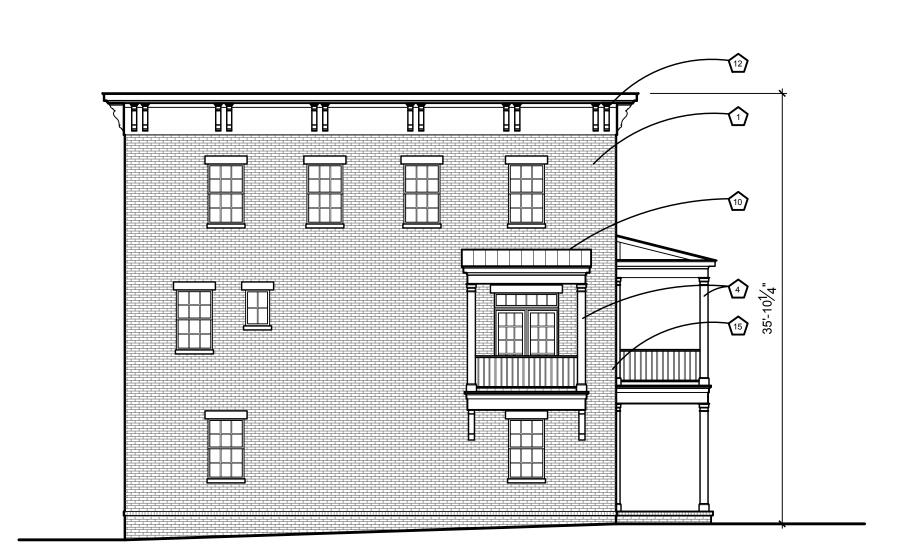
615/739-5555p

info@smithgeestudio.com

ject Contact: Regent Hor Phone: 615/333-9000 SGS Contact: Dallas (SGS Project Number: 1

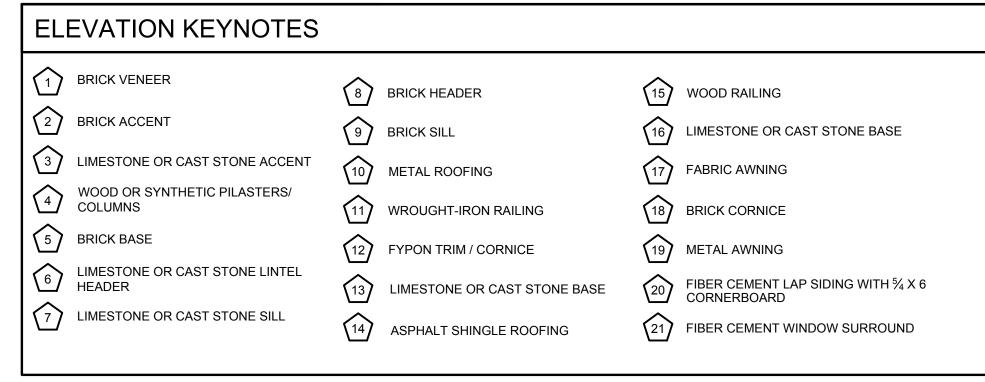
For Planning Commission Review Only

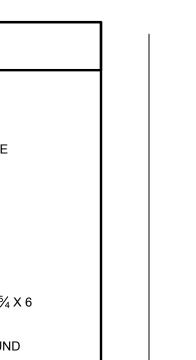
Copyright 2018 by Smith Gee Studio, LLC: All drawings and text contained in these drawings are the property of Smith Gee Studio, LLC and cannot be used without expressed written permission. Do not scale drawings. If any dimensions are needed but not shown, consult the architect.


Drawing:

Townhouse 1 Street Elevation

Townhouse 1 Street Elevation




Townhouse 1 Rear Elevation

1/8" = 1'-0"

Townhouse 1 Rear Elevation

1/8" = 1'-0"

info@smithgeestudio.com Set Type: No: Date:

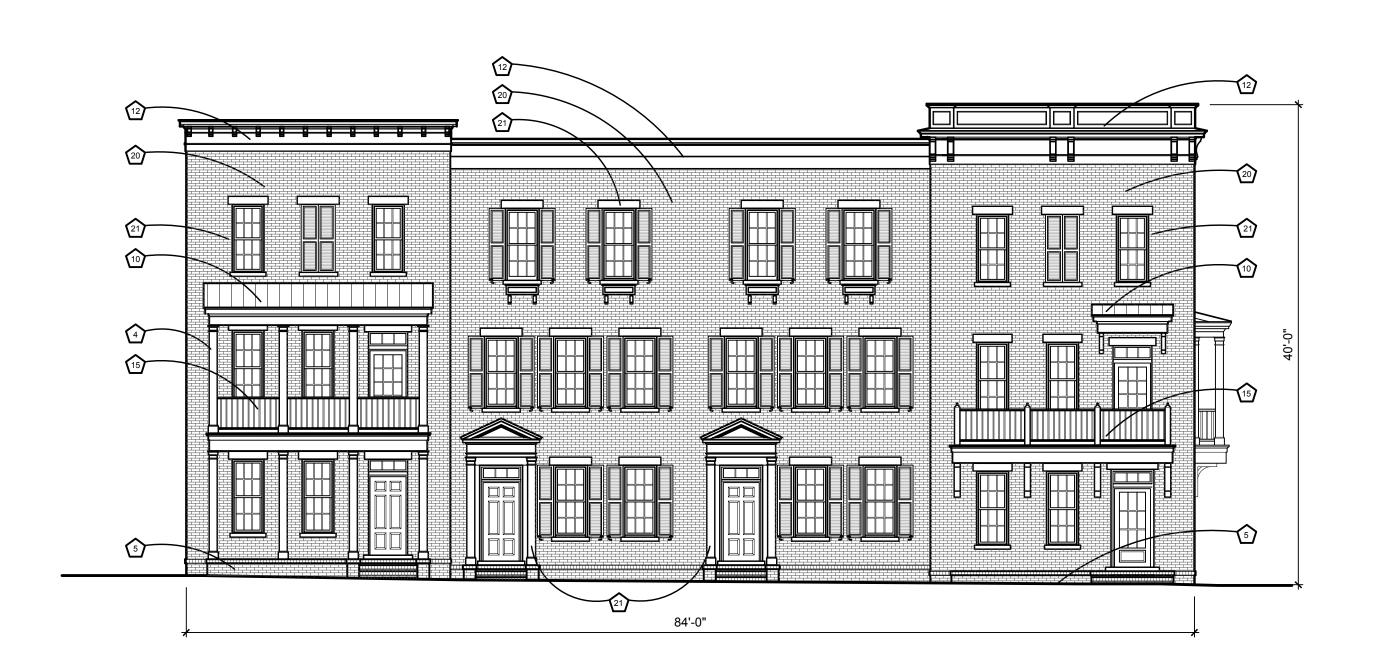
1 10/12/2018 DRC Submittal

Smith Gee Studio, LLC

209 10th Avenue South, Suite 425

Nashville, Tennessee 37203

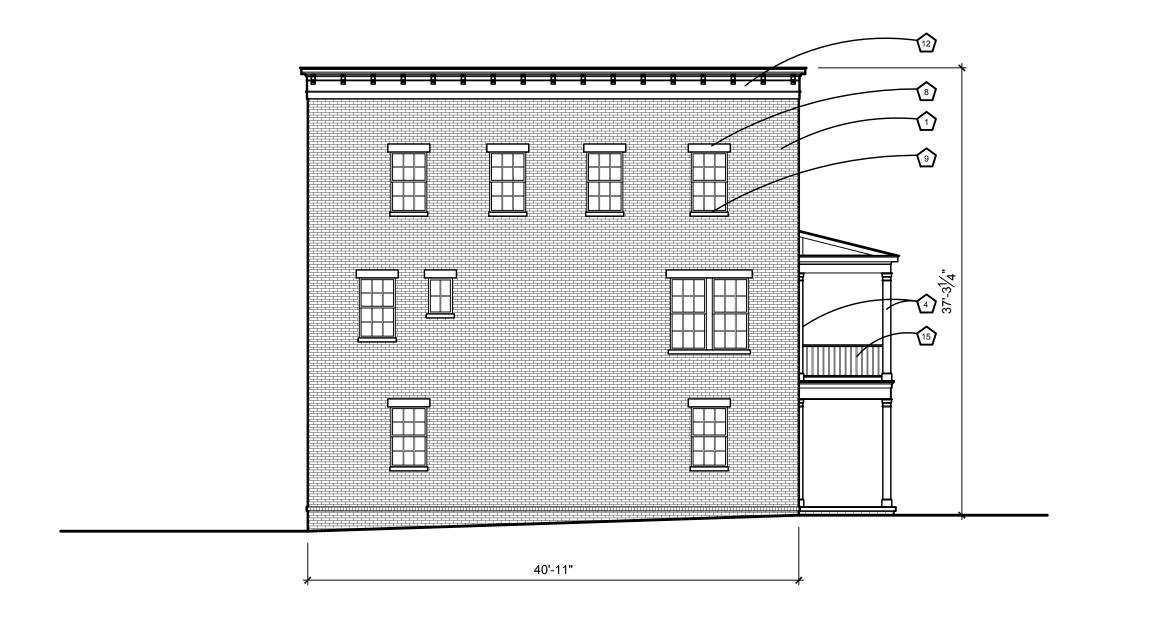
615/739-5555p


ject Contact: Regent Hor Phone: 615/333-9000 SGS Contact: Dallas (SGS Project Number: 1

ect Address: gate Village Station, TN

For Planning Commission Review Only

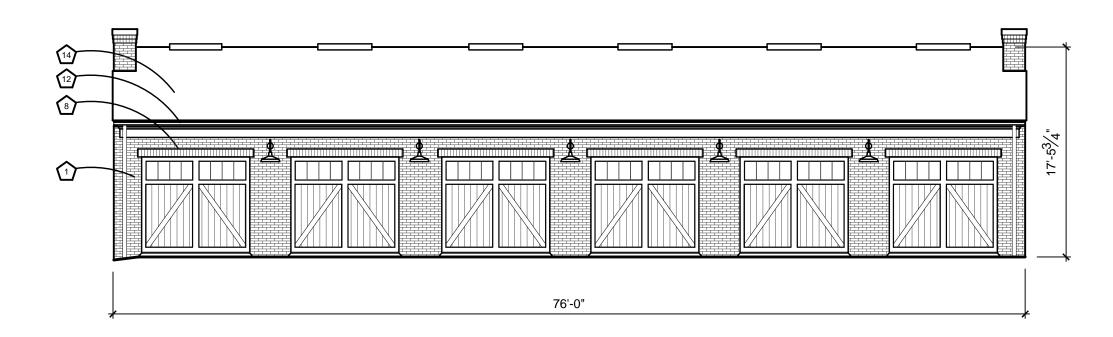
Copyright 2018 by Smith Gee Studio, LLC: All drawings and text contained in these drawings are the property of Smith Gee Studio, LLC and cannot be used without expressed written permission. Do not scale drawings. If any dimensions are needed but not shown, consult the architect.


Drawing:

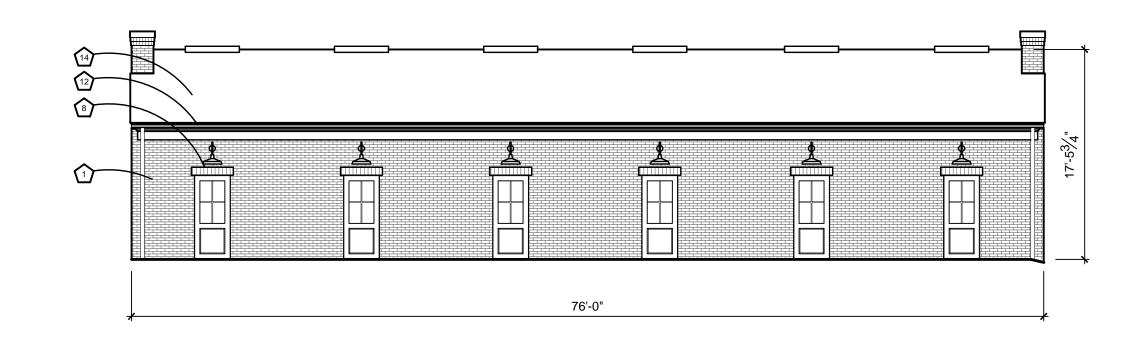
Townhouse #2 Side Elevation

1/8" = 1'-0"

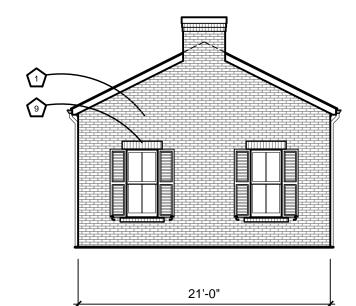
Townhouse #2 Side Elevation

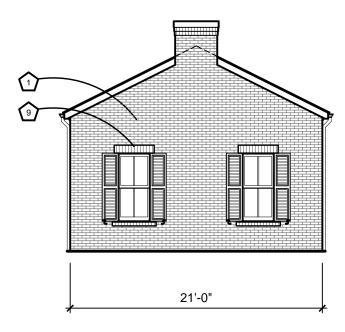

1/8" = 1'-0"

Townhouse #2 Street Elevation


1/8" = 1'-0"

Townhouse #2 Rear Elevation


1/8" = 1'-0"



Garage Elevation

Garage Elevation 1/8" = 1'-0"

Garage Side Elevations

1/8" = 1'-0"

ELEVATION KEYNOTES 1 BRICK VENEER 8 BRICK HEADER 15 WOOD RAILING 2 BRICK ACCENT 9 BRICK SILL 16 LIMESTONE OR CAST STONE BASE 3 LIMESTONE OR CAST STONE ACCENT 10 METAL ROOFING 17) FABRIC AWNING WOOD OR SYNTHETIC PILASTERS/ COLUMNS 18 BRICK CORNICE 11) WROUGHT-IRON RAILING 5 BRICK BASE 19 METAL AWNING 12 FYPON TRIM / CORNICE 6 LIMESTONE OR CAST STONE LINTEL HEADER FIBER CEMENT LAP SIDING WITH ½ X 6 CORNERBOARD LIMESTONE OR CAST STONE BASE T LIMESTONE OR CAST STONE SILL 21) FIBER CEMENT WINDOW SURROUND 14) ASPHALT SHINGLE ROOFING

Smith Gee Studio, LLC 209 10th Avenue South, Suite 425 Nashville, Tennessee 37203 615/739-5555p info@smithgeestudio.com

Set Type:

1 10/12/2018 DRC Submittal

ject Contact: Regent Hor Phone: 615/333-9000 SGS Contact: Dallas (SGS Project Number: 1.

For Planning Commission Review Only

Copyright 2018 by Smith Gee Studio, LLC: All drawings and text contained in these drawings are the property of Smith Gee Studio, LLC and cannot be used without expressed written permission. Do not scale drawings. If any dimensions are needed but not shown, consult the architect.

Drawing:

MaterialMaterialMaterialScheme A|Scheme B|Scheme C

MATERIAL SCHEME A

PORCH & TRIM:

BRICK:

BORAL FARMINGTON WITH
FLAMINGO BRIXMENT C-247 ACHAMOIS

FLAMINGO BRIXMENT C-247 ACHAMOIS
SIDING:
SW 0055 LIGHT FRENCH GRAY
DOORS & WINDOWS:
BOX BAY & PANEL:
SW 6069 FRENCH ROAST
PANEL INFILL:
SW 2806 ROCKWOOD BROWN

MATERIAL SCHEME B

BRICK: PALMETTO LOWCOUNTRY BLEND WITH FLAMINGO BRIXMENT C247 ACHAMOIS

SHUTTERS: SW 2807 ROCKWOOD MEDIUM BROWN DOORS & WINDOWS: SW 6076 TURKISH COFFEE

PANELS: SW 2808 ROCKWOOD DARK BROWN
PANEL INFILL: SW 2841 WEATHERED SHINGLE
STOOP & TRIM: SW 0053 PROCELAIN

MATERIAL SCHEME C

TRIM:

BRICK: PALMETTO KINGSMILL WITH FLAMINGO BRIXMENT C-380 WHITE OAK

SIDING: SW 0055 LIGHT FRENCH GRAY

DOORS & WINDOWS:

PANELS:

SW 6076 TURKISH COFFEE

PANEL INFILL:

SW 6076 TURKISH COFFEE

SGS #18072.07

FRONT ELEVATION

DRC Review - For Planning Commission Review Only

SW 0053 PORCELAIN

10th Avenue South • Suite 425 Nashville, Tennessee 37203 p: 615.739.5555 www.smithgeestudio.com

SW 0053 PROCELAIN

Material Scheme A

Material Scheme B

SGS #18072.07

MATERIAL SCHEME A BRICK:

BORAL FARMINGTON WITH FLAMINGO BRIXMENT C-247 ACHAMOIS SW 6076 TURKISH COFFEE DOORS: PORCH & TRIM: SW 0053 PROCELAIN

MATERIAL SCHEME B

BRICK: PALMETTO KINGSMILL WITH FLAMINGO

BRIXMENT C-380 WHITE OAK SW 6076 TURKISH COFFEE

DOORS: TRIM: SW 0053 PORCELAIN

FRONT ELEVATION

DRC Review - For Planning Commission Review Only

MaterialMaterialMaterialScheme AScheme BScheme C

MATERIAL SCHEME A BRICK:

WINDOWS:
DOORS & SHUTTERS:
DOOR & WINDOW TRIM:
WINDOW PANEL & INFILL:

BALCONIES: CORNICE:

TRIM:

SW 2822 DOWNING SAND SW 7008 ALABASTER SW 2856 FAIRFAX BROWN SW 7008 ALABASTER MATERIAL SCHEME B BRICK:

WINDOWS: DOORS & SHUTTERS: WINDOW TRIM: WINDOW PANEL & INFILL: BALCONIES: METAL ROOF: GENERAL SHALE ST. LOUIS QUEEN
WITH COOSA BUFF IVORY MORTAR
SW 7008 ALABASTER
SW 9179 ANCHORS AWAY
SW 7008 ALABASTER
SW 7008 ALABASTER
SW 7008 ALABASTER
UNACLAD CHARCOAL GRAY

MATERIAL SCHEME C BRICK:

WINDOWS:
DOORS & SHUTTERS:
DOOR & WINDOW TRIM:
WINDOW PANEL & INFILL:
TRIM:

BALCONIES: CORNICE: SW 2850 CHELSEA GRAY
SW 7008 ALABASTER
SW 0041 DARD HUNTER GREEN
SW 7008 ALABASTER

SGS #18072.07

FRONT ELEVATION

209 10th Avenue South • Suite 425 Nashville, Tennessee 37203 p: 615.739.5555 www.smithgeestudio.com

Material Material Scheme A Scheme B

MATERIAL SCHEME A BRICK:

WITH COOS
WINDOWS & DOORS: SW 2851
WINDOW TRIM: SW 2851
STOREFRONT SW 2851

STOREFRONT PANEL & INFILL: BALCONIES & COLUMNS: METAL ROOF:

GENERAL SHALE DRIFTWOOD QUEEN
WITH COOSA SOUTHERN WHITE
SW 2851 SAGE GREEN LIGHT
SW 2851 SAGE GREEN LIGHT
SW 2851 SAGE GREEN LIGHT
ILL: SW 2851 SAGE GREEN LIGHT
SW 7008 ALABASTER
UNACLAD CHARCOAL GRAY

MATERIAL SCHEME B BRICK:

WINDOWS & DOORS: SHUTTERS: STOREFRONT: STOREFRONT PANEL & INFILL: METAL ROOF:

CORNICE:

SW 7005 PURE WHITE LINETEC CHARCOAL GRAY SW 2848 ROYCROFT PEWTER LINETEC CHARCOAL GRAY SW 7005 PURE WHITE UNACLAD CHARCOAL GRAY SW 7005 PURE WHITE

Regent

FRONT ELEVATION

SGS #18072.07

MATERIAL SCHEME A

BRICK: BRAMPTON BROWNSTONE QUEEN

WITH COOSA ANTIQUE BUFF MORTAR

HEADER & SILLS:

CAST STONE

DOORS & STOREFRONT: SW 2936 BLACK EMERALD STOREFRONT TRIM: SW 2936 BLACK EMERALD DOOR & WINDOW TRIM: SW 2936 BLACK EMERALD

STOREFRONT PANELS:
STOREFRONT PANEL INFILL:
SW 2936 BLACK EMERALD
SW 0023 PEWTER TANKARD
TRIM:
SW 7042 SHOJI WHITE

BALCONIES: SW 6153 PROTEGE BRONZE

COPING: BERRIDGE BUCKSKIN

MATERIAL SCHEME B

BRICK: BRAMPTON MARSHALL QUEEN

WITH COOSA IVORY BUFF MORTAR

DOOR & WINDOW TRIM:
DOORS & WINDOWS:
PANELS:
SW 7041 VAN DYKE BROWN
SW 7041 VAN DYKE BROWN
PANEL INFILL:
SW 0024 CURIO GRAY
BALCONIES:
SW 6153 PROTEGE BRONZE
COPING:
BERRDIGE BUCKSKIN

MATERIAL SCHEME C

BRICK: CHEROKEE VELOUR DARK GRAY QUEEN

WITH COOSA FROSTY MORTAR WINDOWS: SW 2808 ROCKWOOD DARK

STOREFRONT & DOORS:

STOREFRONT & DOORS:

BROWN

SW 2808 ROCKWOOD DARK STOREFRONT TRIM & PANEL, TRIM BROWN

BRACKETS, & COLUMNS: SW 7042 SHOJI WHITE

METAL ROOF: UNACLAD HARTFORD GREEN

Material Scheme A Material Scheme B Material Scheme C

FRONT ELEVATION

DRC Review - For Planning Commission Review Only

SGS #18072.07

Oth Avenue South • Suite 425 Nashville, Tennessee 37203 p: 615.739.5555

MATERIAL SCHEME A

BRICK:

DOORS: TRIM:

CORNICE PANEL: METAL ROOFING:

BRAMPTON jASPER WITH COOSA IVORY BUFF MORTAR SW 7059 UNUSUAL GRAY SW 6995 SUPER WHITE SW 7656 RHINESTONE BERRIDGE ZINC GREY:

MATERIAL SCHEME B

BRICK: TRIM: DOORS: COPING:

SHUTTERS:

SW 7066 EXTRA WHITE SW 7058 MAGNETIC GRAY SW 7060 ATTITUDE GRAY BERRIDGE ZINC GRAY SW 6257 GIBRALTAR

MATERIAL SCHEME C

BRICK:

TRIM: DOORS:

COPING: METAL ROOFING:

BRAMPTON GIBSON WITH COOSA IVORY BUFF MORTAR 7657 TINSMITH SW 7601 DOCKSIDE BLUE BERRIDGE ZINC GREY BERRRIDGE ZINC GREY

Material Scheme A

Material Scheme B

Material Scheme C

FRONT ELEVATION

Nashville, Tennessee 37203 p: 615.739.5555 www.smithgeestudio.com

MATERIAL SCHEME A

BRICK:

ENTRY DOOR: TRIM: SHUTTER: METAL ROOFING: COPING: BRAMPTON NEWTON WITH COOSA IVORY BUFF MORTAR SW 6257 GIBRALTAR SW 7646 FIRST STAR SW 6257 GIBRALTAR BERRIDGE ZINC GREY: BERRIDGE MATTE BLACK

MATERIAL SCHEME B

BRICK:

TRIM: ENTRY DOORS: COPING: SHUTTERS: BRAMPTON CRAWFORD WITH COOSA IVORY BUFF MORTAR SW 7005 PURE WHITE SW 7625 MOUNT ETNA BERRIDGE MATTE BLACK SW 7625 MOUNT ETNA

MATERIAL SCHEME C

BRICK: TRIM: DOORS: METAL ROOF: BRICK BASE: SW 7658 GRAY CLOUDS SW 7661 REFLECTION SW 6258 TRICORN BLACK BERRIDGE ZINC GREY BRAMPTON GIBSON WITH COOSA IVORY BUFF MORTAR

Material Scheme A Material Scheme B Material Scheme C

FRONT ELEVATION

Nashville, Tennessee 37203 p: 615.739.5555 www.smithgeestudio.com

Tollgate Town Center Site Plans Phase 2A

EDO Count			
8/30/2018		EDU	EDU
•		Residential	Commercial
		Units	Units
Townho	me Buildings		
	1	3	0
	2	4	0
	3	3	0

Condo Buildings		
1	12	0
	12	0

Live Work Buildings			
	1	5	5
:	2	4	4

Mixed Use Building		
1	3	3
	3	3

	3	3
Totals	38	12

9

Total Number of EDU/Taps

50

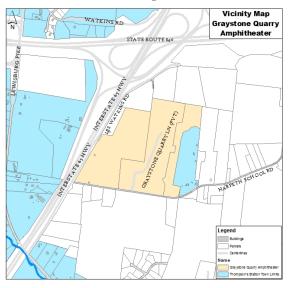
9

Basis for Residential Unit count

Ordinance 10-007; 14-001; top of Exhibit A

"Residential uses shall constitue one (1)EDU for each separate living unit or quarters. Accessory living quarters both attached and detached also constitue one (EDU)."

Basis for Commercial Unit count


Ordinance 10-007, Section 3. "System Development, Access/Tap and Effluent Disposal Fee" "An equivalent dwelling unit (EDU) is based on an estimated single family dwelling water usage at three hundred fifty (350) gallons per day (GPD). Water usage for the purpose of calculating fees shall deem any usage less than three hundred fifty (350) GPD as one (1) EDU and any usage calculated to exceed three hundred fifty (350) GPD (or multiples thereof) shall be counted as an additional EDU."

Thompson's Station Planning Commission Staff Report - Item 4 (SP 2018-008; DR 2018-005) October 25, 2018

Request for approval of a revision to the site plan for a Specific Plan. The revision includes the construction of a ticket booth, restrooms, three concession buildings, a first aid building and a storage building located at 4520 Graystone Quarry.

REQUEST

The applicant, Dale & Associates on behalf of Graystone Quarry is requesting approval for the construction of additional buildings to serve the event venue and amphitheater located at 4520 Graystone Quarry Lane.

BACKGROUND

The project site is located within Specific Plan zoning district and a site plan was approved for the development of an event venue which would be constructed in two phases. The first phase is complete with a single-family residence, a wedding pavilion and event barn. The next phase consists of a revision to the plan to permit an artist compound and stage for an amphitheater. The request also designated an area for concessions and restrooms however, these were to be temporary or portable structures. The request to amend the plan was submitted and approved by the Board of Mayor and Aldermen on February 13, 2018.

The site plan for Graystone Quarry was approved with the following contingencies:

- 1. Prior to the issuance of any permits, the amendment to the existing specific plans shall be adopted.
- 2. Prior to the issuance of a building permit, the applicant shall obtain all necessary approvals from Williamson County Sewage Disposal.
- 3. The use of current technology that includes but may not be limited to, steerable sound systems or directional loudspeakers be utilized for the amphitheater.
- 4. Portable restrooms shall be used temporarily on a case by case basis and shall be removed immediately after the event.
- 5. Prior to the issuance of a grading or building permit, all traffic mitigation shall be completed in accordance with the traffic study dated January 2018.
- 6. Any change of use or expansion of the project site shall conform to the requirements set forth within the Zoning Ordinance and shall be approved prior to the implementation of any changes to the project.

Site Plan

A site plan is a plan presenting the general details of the development proposal and review by the Planning Commission is required for all multi-family and non-residential developments to ensure "compliance with the development and design standards" (Section 5.4.4) of the Land Development Ordinance.

The overall project site is approximately 133 acres and is currently developed with the first phase of Graystone Quarry and the owner's residence. The first phase consists of a 10,426 square foot event center, a 5,090 square foot pavilion and an 8,233 square foot residence. Phase 2 will consist of an 8,100 square foot artist compound and stage which are approved however not constructed at this time. This proposed revision includes the construction of three concession stands for a total of 2,156 square feet, a 3,915 square foot restroom building, an 880 square foot ticket booth, an 864 square foot first aid building and a 5,000 square foot storage barn. The proposed buildings are setback on the site in proximity to the existing buildings with limited visibility from the road. The Specific Plan zoning district did not have any development standards other than the requirement for 40% open space for non-residential projects and 50% open space for residential projects. Approximately 74% of the site will be maintained in a predominantly natural state and no tree removals are proposed as part of these revisions. Access to the site is from Les Watkins Road and all parking is provided on site. No change to access or parking is proposed with the amendment to the site plan.

Architecture

The proposed buildings are subject to review and approval by the Design Review Commission (DRC). The proposed buildings will be consistent with the colors and materials used for the existing buildings on site. The DRC will meet to review the proposal on November 7, 2018.

Wastewater Management

The site is currently served by a septic system, however, in order to expand the use, the applicant is proposing a private on-site system. The Board of Mayor and Aldermen reviewed the request for the private system and deferred the request until the November BOMA meeting. Staff does not typically recommend for approval of a project without approval of all utilities, however, the site does have a functioning septic system that is managing all the wastewater at this time. Therefore, Staff recommends a contingency that prior to any permits, the applicant obtain approvals from the Tennessee Department of Environment and Conservation and the Board of Mayor and Aldermen necessary for the expansion of the use.

RECOMMENDATION

Staff recommends the Planning Commission approve the site plan and recommend to the Board of Mayor and Aldermen to adopt an ordinance amending the specific plan to include these additional buildings for Graystone Quarry with the following contingencies:

- 1. Prior to the issuance of any permits, the amendment to the specific plan shall be complete.
- 2. Prior to the issuance of a building permit, the applicant shall obtain approval for the buildings from the DRC.
- 3. Prior to the issuance of building permits, the applicant shall obtain approval for a new private onsite wastewater treatment system.
- 4. Any change of use or expansion of the project site shall conform to the requirements set forth within the Land Development Ordinance and shall be approved prior to the implementation of any changes to the project.

ATTACHMENTS

Site Plan Packet

Graystone Quarry Amphitheater

Commercial Phase II Site Plan

Map 144, Parcels 1.02 & 2.02

4520 Graystone Quarry Lane

Thompson's Station, Williamson County, Tennessee

PROJECT SCOPE

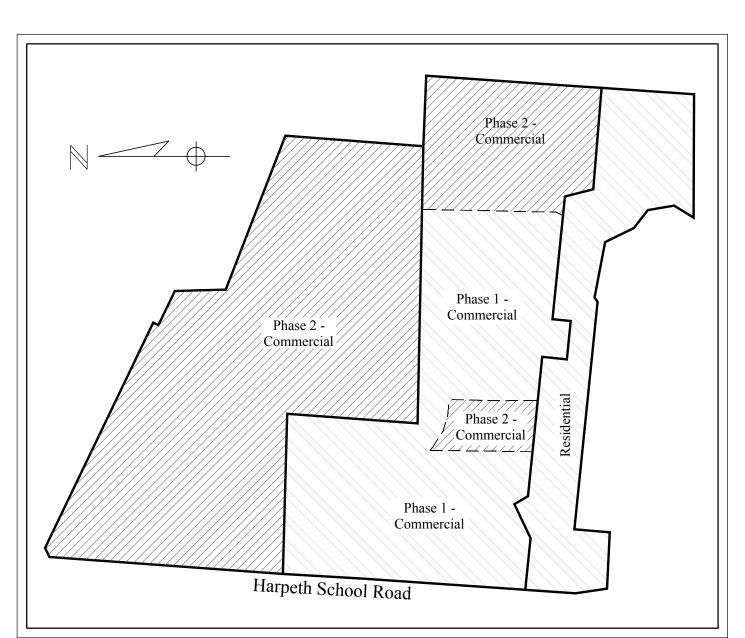
Graystone Quarry is a proposed multi-use event center development on the north side of Harpeth School Road in the southeast quadrant of the intersection of Interstate 65 and 840 in Thompson's Station, TN. The site will be designed using upscale rural architecture, careful landscape features, and will incorporate the unique yet beautiful landscape of the property. The aim is to provide Thompson's Station and the surrounding community with a unique and attractive destination to hold weddings, reunions, concerts, corporate events, or other social gatherings.

The purpose of this plan is to provide an update to the previously approved Graystone Quarry. Graystone Quarry has purchased the adjacent property that was previously approved as Hoodoo. Graystone Quarry will be utilizing this property for general admission parking during amphitheater events. The plans illustrate the updated parking concept. Other updates include expanding the amphitheater seating and stage/buildings. increasing the footprint of the Green Room, and providing ancillary uses. No change of use is being proposed on these plans than what was previously approved.

The development will incorporate three different uses in three separate areas. A summary of each area of the development is as follows:

- An approximately 5,000 square foot single family residential house will be constructed in an area along the east side of the property. This will be the residence of the owner/operator of the development.

Commercial Phase 1 - Event Center & Wedding Chapel/Pavillion


- The event center building called the 'Barn' will be constructed overlooking the existing quarry lake. Utility Infrastructure for the 'Barn' will be designed to accommodate a building size of up to 12,000 Sq. Ft. High-end rustic architectural features will be implemented to stylistically enhance and blend the beautiful natural surroundings. Using stone, timber and careful landscaping, the event center will be a beautiful venue for weddings, reunions, corporate gatherings, or community events.

- A courtyard will be constructed out front of the building leading down to an existing lake. The lake will be cleaned up and it sits against existing vertical stone walls providing a striking view from the event center.
- A Chapel/Pavilion will also be constructed near the main building. Utility Infrastructure for this building will be designed to accommodate a building size of up to 5,000 Sq. Ft. This structure will be used for the wedding ceremony or other community event. This pavilion will incorporate similar rustic architecture to match the main building and blend into the surrounding landscape.
- A storage & maintenance building will also be constructed on the premises to house equipment and tools required for maintenance of the property. This building will be tucked into a hidden area that is surrounded by the existing quarry walls, and supplemental landscaping will be installed to hide the building from view.

Phase 2 - Amphitheater

- A state-of-the-art outdoor amphitheater will be installed in the existing quarry's main area. Approximately 100-foot vertical stone walls provide a stunning backdrop for potential concert or community gatherings or events.

- An approximately 2,500 square foot permanent stage will be installed at the low narrow end of the natural amphitheater. An approximately 4,200 square foot Artist Compound / Green Room will be installed behind the stage for the performers, and will contain permanent restroom facilities with showers.
- Only the minimal amount of disturbance will take place to prepare the amphitheater for events. As much of the natural surroundings will be preserved and it is not anticipated to disturb the quarry walls except for the activity required to ensure stability and safety of
- The lower portion of the quarry will be a gently sloping floor for event seating. There is an approximately 1-acre shelf on the east side of the main seating area that will be an open area for vendors, restrooms, picnic tables, and VIP seating on the western
- Additional accessory buildings will be constructed in the general locations on the plans. as ancillary uses to the amphitheater.
 - These include
 - Permanent Concession buildings
 - Permanent restroom building - Ticket / Entry Building
 - Storage Building - First Aid Building
- Increased capacity of the amphitheater from 5000 to up to 7148 fixed seats plus standing room only
- Relocate main access point to the amphitheater from Harpeth School Road to the highway service road facing Highway 65 (on Les Watkins Road)
- Moved planned parking from the front field at Graystone Quarry facing Harpeth School Road, to the corner property at the intersection of Harpeth School Road and Les Watkins Road where the majority of parking will be out of sight in the upper
- Added accessory buildings to the accommodate ancillary uses to the amphitheater

Sheet Schedule

1	$\mathbf{C0.0}$	Cover Sheet
2	C1.0	Overall Master Plan
3	C2.0	Layout and Utility Plan - Sheet 1
4	C2.1	Layout and Utility Plan - Sheet 2
5	C3.0	Grading and Drainage Plan - Sheet 1
6	C3.1	Grading and Drainage Plan - Sheet 2

DEVELOPMENT SUMMARY

Owners / Developer Graystone Quarry Events 4520 Graystone Quarry Lane Franklin TN, 37064 Rick McEachern (408) 621-0746

Civil Engineer and Surveyor Dale & Associates (Adam Seger, PE)

516 Heather Place Nashville, Tennessee 37204

Map. (FIRM) Numbers 47187C0355F & 47187C0365F, Dated Sept. 29. 615.297.5166

Benchmark Chiseled Square on SE Corner of Headwall Located near the SW Corner of the Property on the South Side of Harpeth School Access Rd.

NGVD Elevation 768.37.

Property Information

Graystone Quarry Events

Franklin TN, 37064

Floodnote

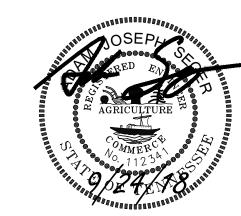
4520 Graystone Quarry Lane

This property does not lie within a

Flood Hazard Area as depicted on

the current Flood Insurance Rate

Electric Service Middle Tennessee Electric Membership Corporation 2156 Edward Curd Lane Franklin, TN 37067

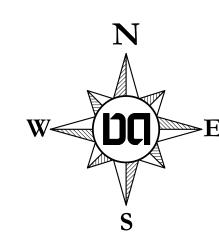

Water Service HB & TS 505 Downs Blvd

Franklin, Tn 37064 615.794-7796

Sewer Service Septic On Site

Utility Location Tennessee One-Call 800.351.1111

SITE DATA	
Zoning: SP Total Property Area Residential 872672 sq ft or 20.0 Ac. Phase I 1302055 sq ft or 20.9 Ac. Phase II 3788025 sq ft or 87.0 Ac.	133.1 Ac.
Drives/ Sidewalks Building Parking (Grass) Septic Open Space	9.3 Ac. 0.7 Ac. 21.1 Ac. 4.0 Ac 98.0 Ac.
Impervious Surface Ratio Floor Area Ratio	0.08 Ac. 0.004 Ac.
Front Setback Side Setback Rear Setback	20 Ft. 20 Ft. 20 Ft.
Parking Requirements PHASE I Pavilion	1 per 6 seats 176 seats
Barn	= 30 stalls (paved)1 per 50 sq ft (5,350 sq ft - assembly area)= 107 stalls (paved)
PHASE II Amphitheater Total Required	1 per 6 seats (7,148 permanent seating) = 1191 stalls 1 per 50 sq ft (3,580 sq ft, temporary seating) = 72 stalls 1,263 stalls
	General Admission - 2,663 Stalls (Grass) Premier Parking - 267 stalls (Grass) Bus Parking - 32 Stalls (Paved) Employee Parking - 88 Stalls (Paved)
Total Provided (Phase I and Phase II)	3,187 Stalls (2,930 grass + 257 paved)
BUILDING AREAS Existing Event Center - less than 12,000 sq ft Existing Pavilion - less than 5,000 sq ft	
Proposed Artist Compound - 8,100 sq ft Proposed Large Concession - 980 sq ft Proposed Small Concession - 336 sq ft Proposed Ice Room w/ Concessions - 840 sq ft Proposed Restroom 3,915 sq ft Proposed First Aid Building - 864 sq ft	



Proposed Ticket Booth - 880 sq ft Proposed Storage Barn - ~5,000 sq ft

D&A Project #14038

Graystone Quarry Amphitheatre

Scale 1" = 200'

Development Summary

Owners / Developer Graystone Quarry Events Rick McEachern (408) 621-0746

Civil Engineer and Surveyor
Dale & Associates (Adam Seger, PE) 516 Heather Place Nashville, Tennessee 37204 615.297.5166

1	T L	1-	
Line	Tab		
L1	Ν	20°56'4" W	52.22
L2	S	58°49'2" E	30.00
L3	Ν	30°49'7" E	197.52
L4	S	86°30'18" E	107.67
L5	Ν	53°15'49" W	119.85'
L6	S	85°18'09" W	139.11
L7	S	42°33'44" W	118.32'
L8	S	68°58'42" W	167.31'
L9	S	31°21'02" E	26.28'
L10	S	86°36'50" W	166.59'
L11	Ν	80°58'30" W	266.98'
L12	Ν	79°10'55" W	95.81'
L13	Ν	10°49'05" E	200.65
L14	S	79°10'55" E	129.03'
L15	S	64d43'58" W	82.09

Water - Graystone Quarry will be served by public water through HB & TS Utility

Sewer - Graystone Quarry utilizes septic to treat all sewer in the development. The wedding event facility and associated buildings, the residential house, and the permanent bathrooms at the Amphitheater will all be served through a private septic system that has been reviewed, approved, and installed in accordance with Williamson County. During amphitheater events, portable toilets will be utilized for the general public.

Electric - Graystone Quarry will be served by MTEMC for electric.

Environmental Resource Notes:

A full boundary and topographic survey was performed along with a preliminary jurisdictional determination. There is an existing stream running along the frontage of the property near the intersection of Harpeth School Road and Les Watkins Road. The project will implement the required buffers and will not disturb this area. No environmental resources are proposed to be disturbed other than the select clearing of trees.

Stormwater Notes:

All stormwater on site has been designed to meet the regulations. A lake is constructed on the south side of the development that captures most of the runoff from the developed portion of the site. This lake treats both the water quantity and water quality for the development. The parking areas shall be seeded with grass, with minimal to no impervious surfaces, these areas are low impact. The main drive will be asphalt as well as the bus and employee parking areas. The pedestrian walkways to be a solid surface.

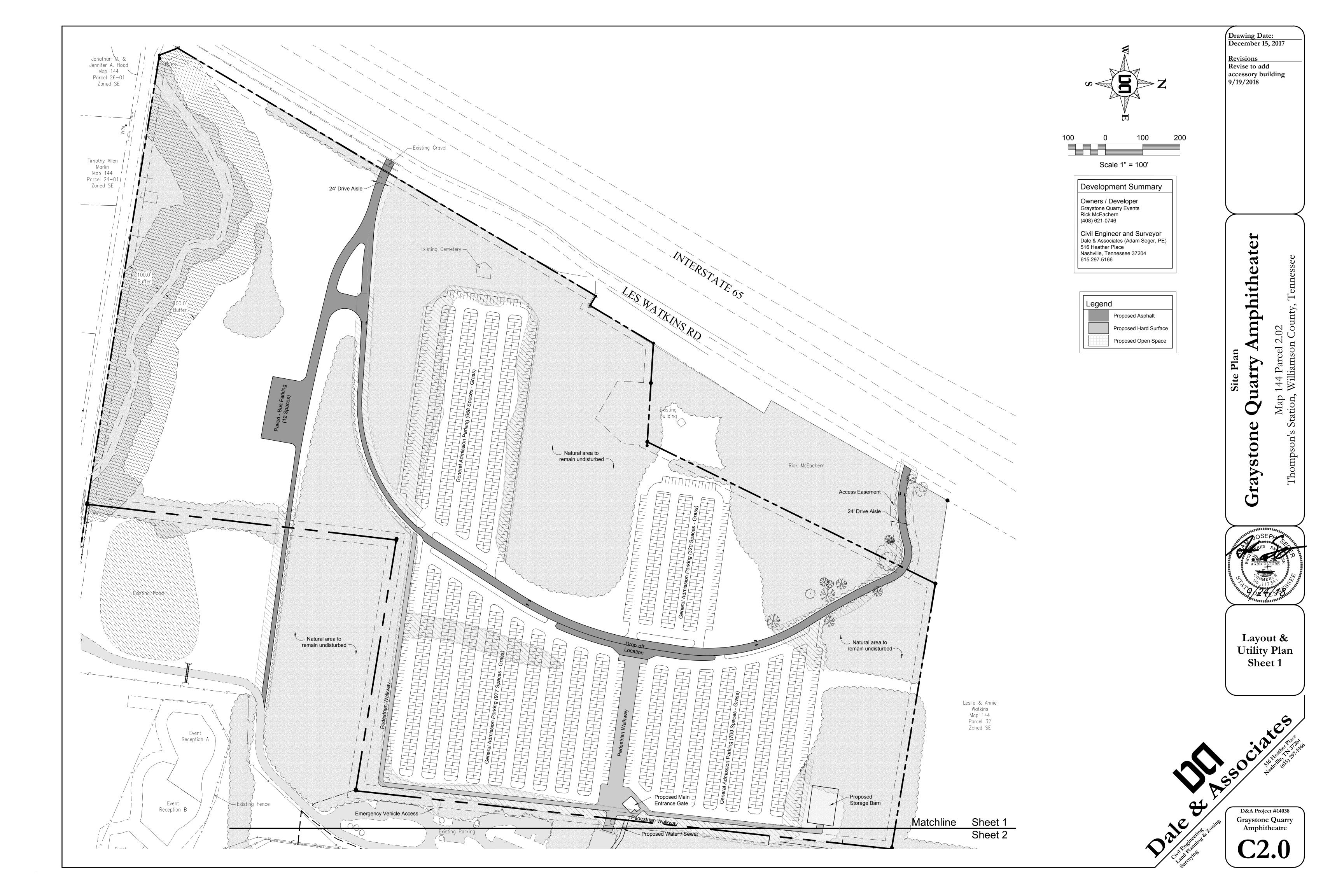
Landscape Notes:

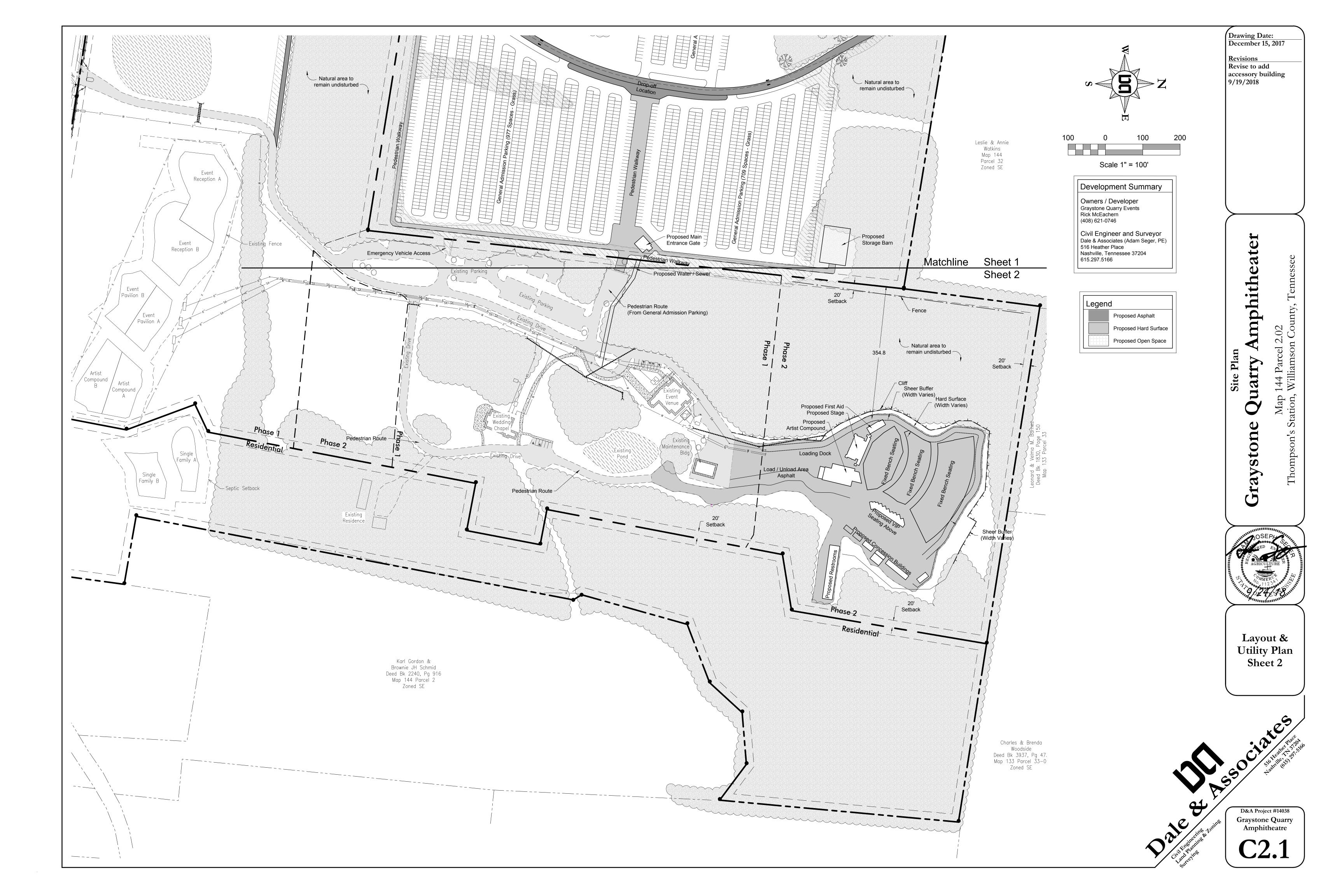
Care shall be taken to minimize tree removal. The areas shown [//////// shall be the only areas where possibly trees less than 18" may be removed, these areas are approximately 11% of the total treed areas. It is not anticipated that trees 18" and greater

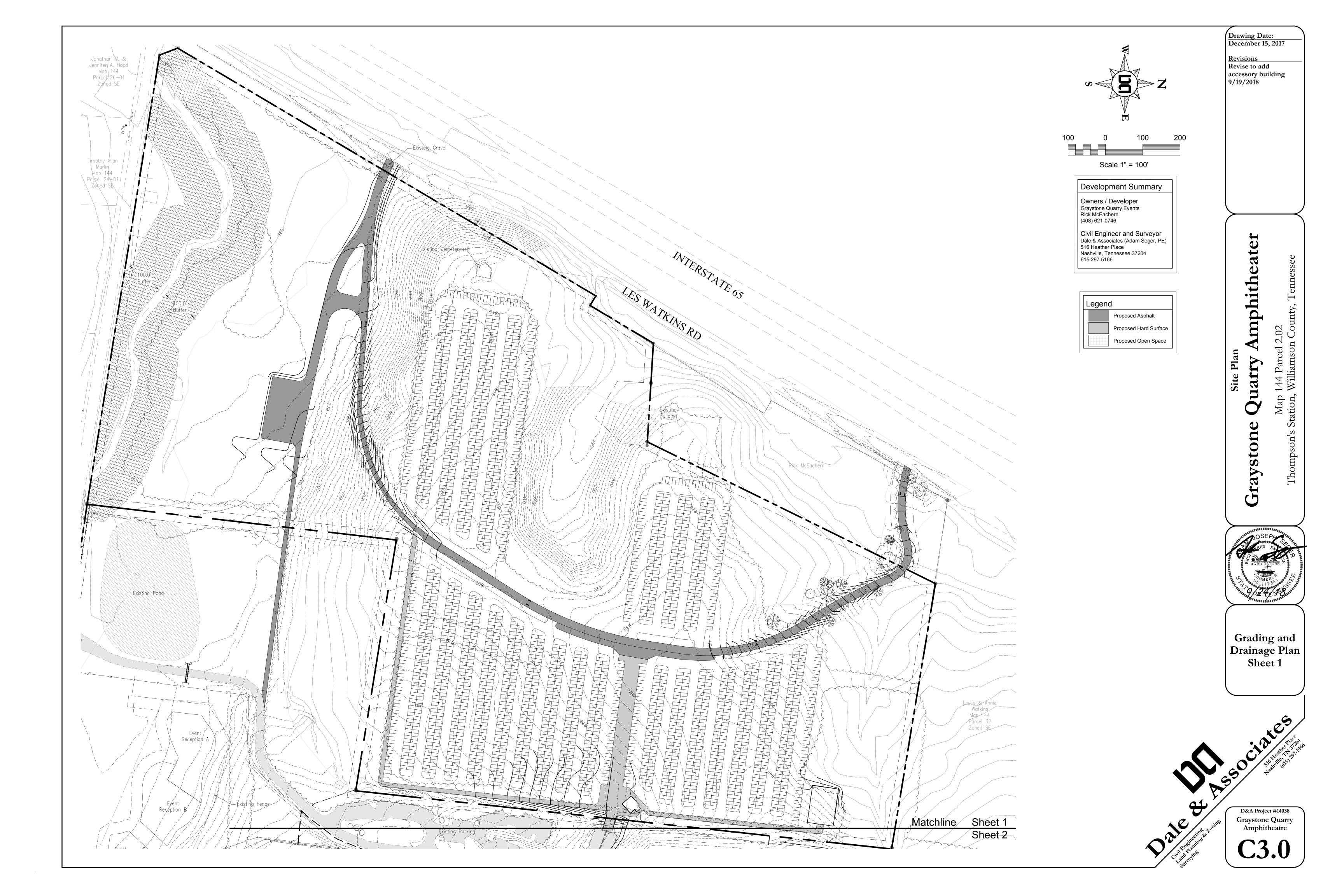
> Legend Proposed Asphalt Proposed Hard Surface Proposed Open Space

Drawing Date: December 15, 2017

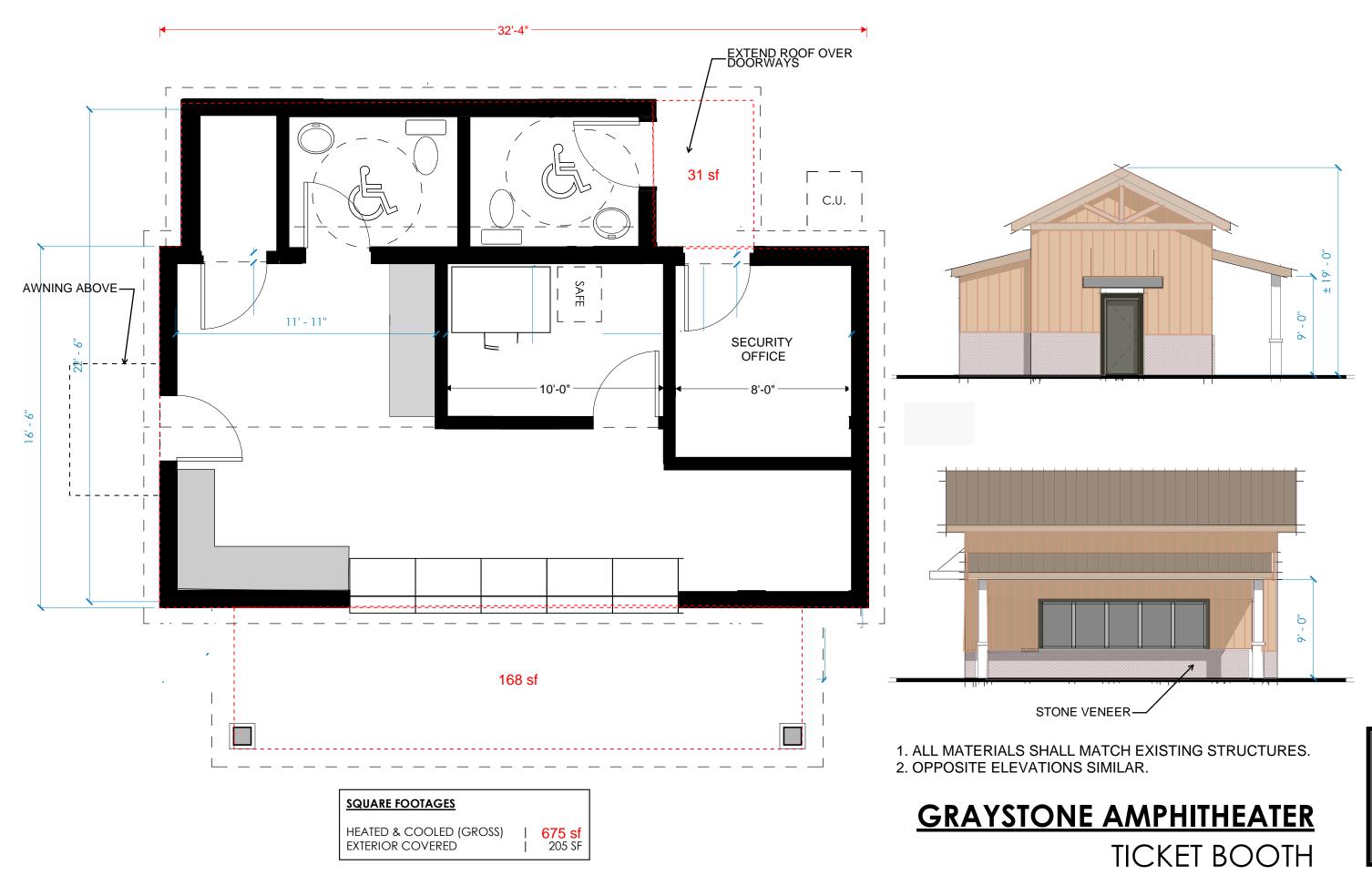
Revisions Revise to add accessory building

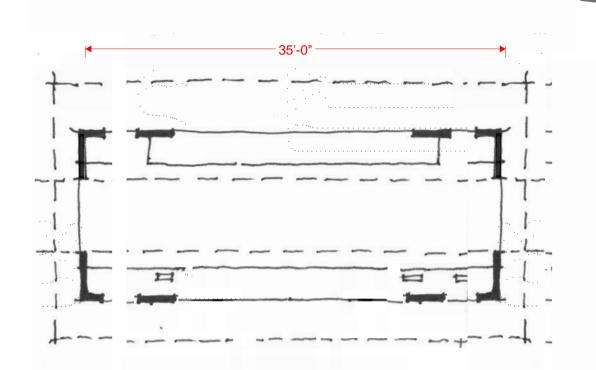

9/19/2018

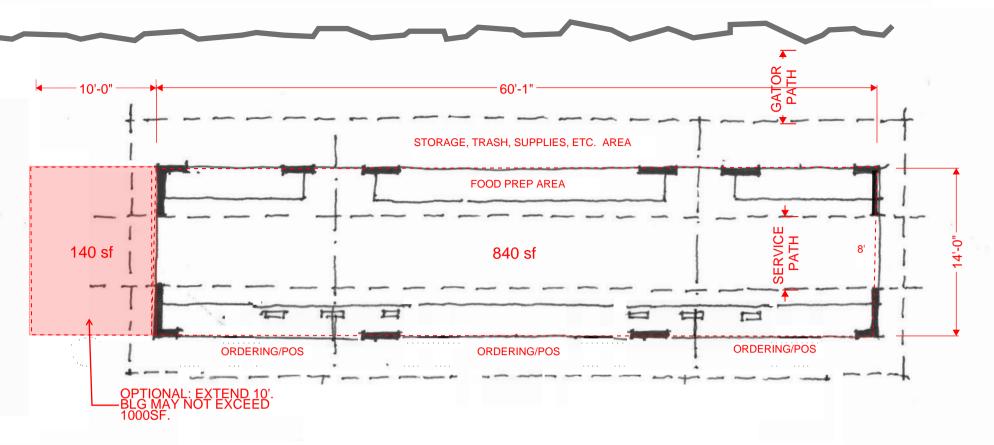

mphitheater Site Plan

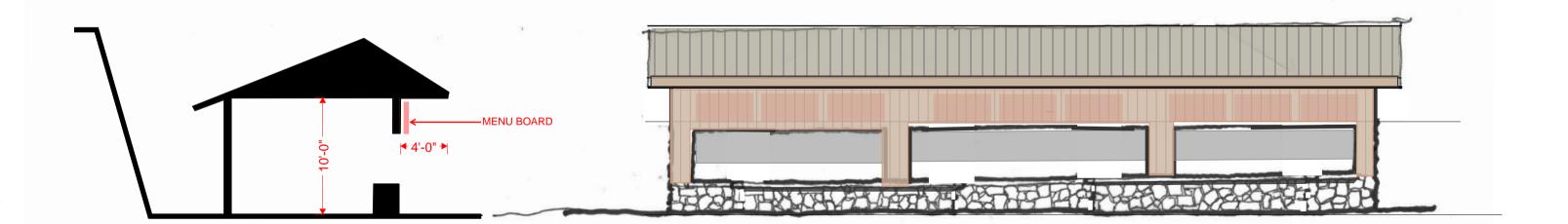


Overall Master Plan


D&A Project #14038 **Graystone Quarry** Amphitheatre



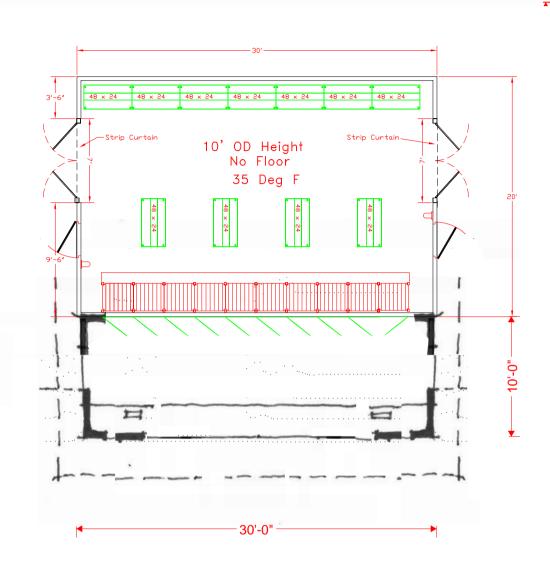



REVISED 8.15.18 johnson architect

CONCESSIONS BUILDING BLG. #2, MERCH. BLG. 1/8"=1'0"

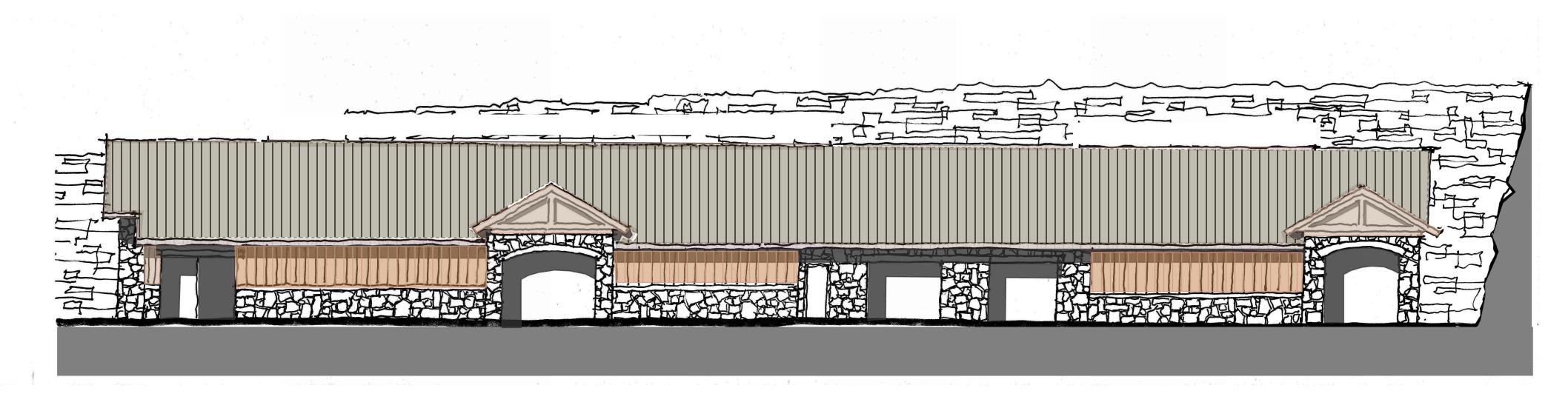
CONCESSIONS BUILDING #1

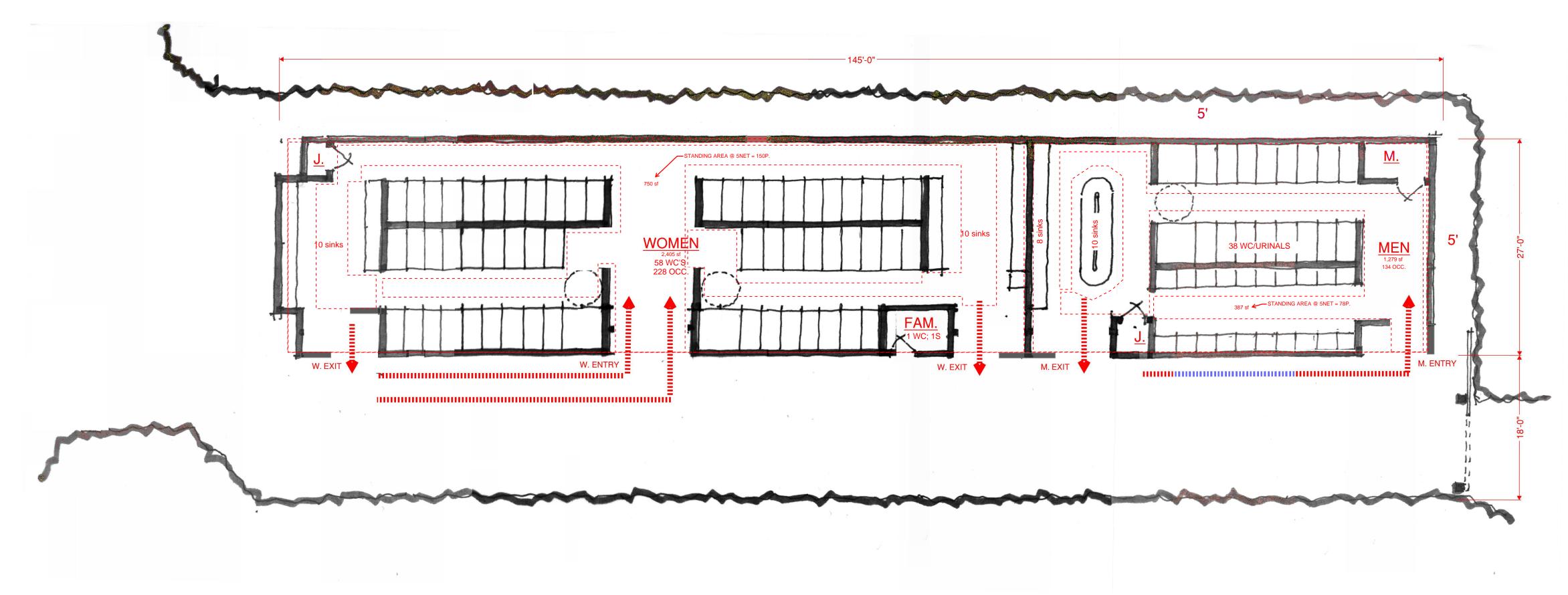
TYPICAL BUILDING SECTION 1/8"=1'0"

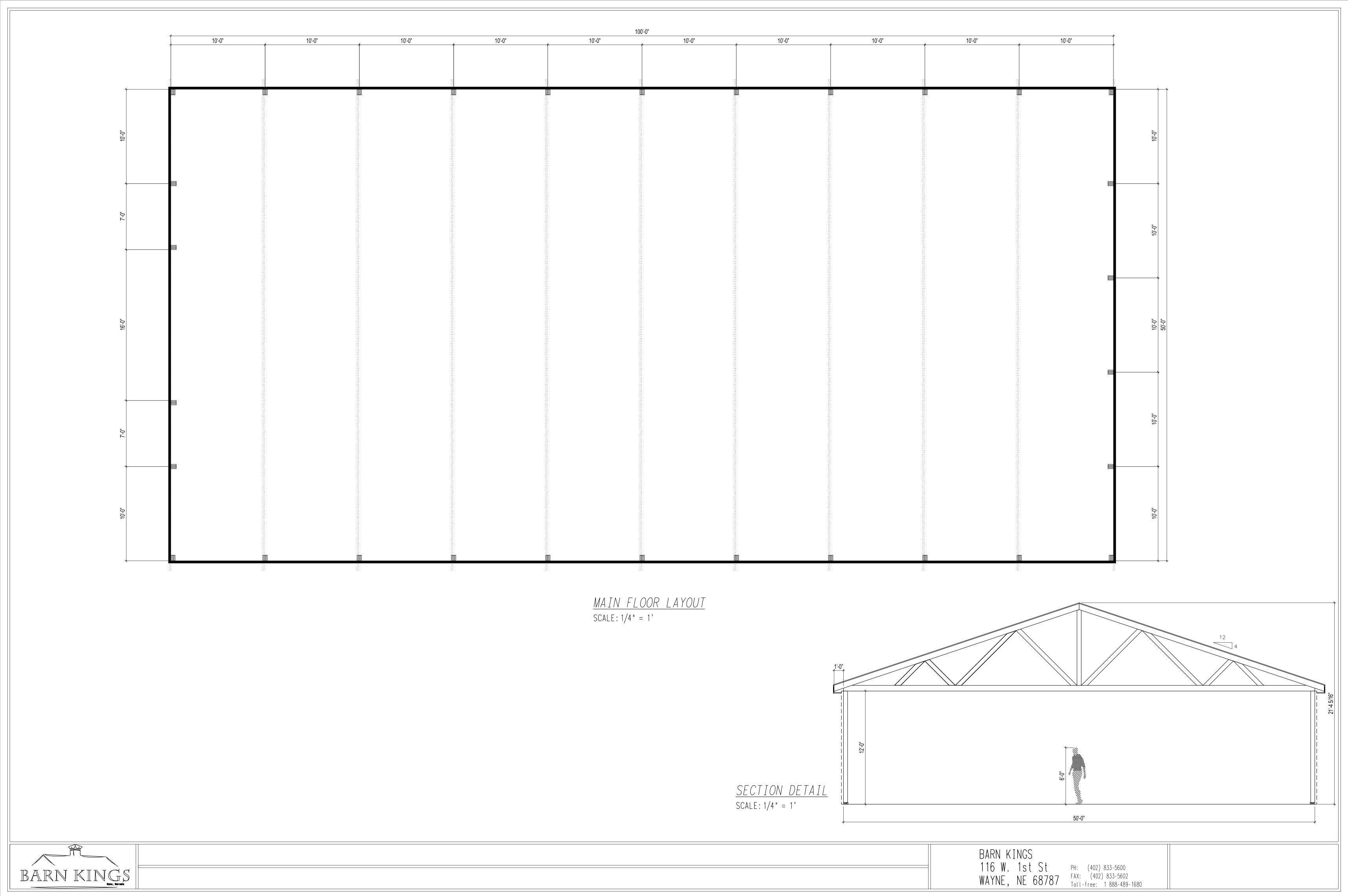

CONCESSIONS BUILDING CONCEPTUAL STUDY

/8"=1'0"

- 1. ALL MATERIALS SHALL MATCH EXISTING STRUCTURES.
- 2. OPPOSITE ELEVATIONS SIMILAR.

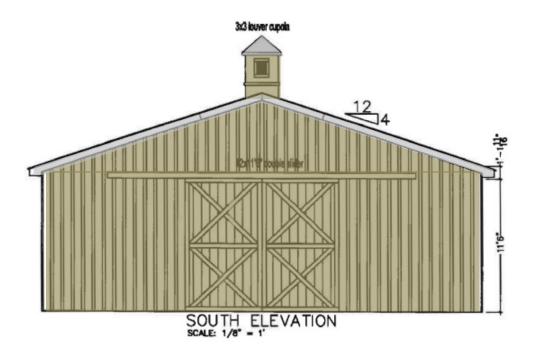



BEER/COOLER BUILDING
1/8"=1'0"



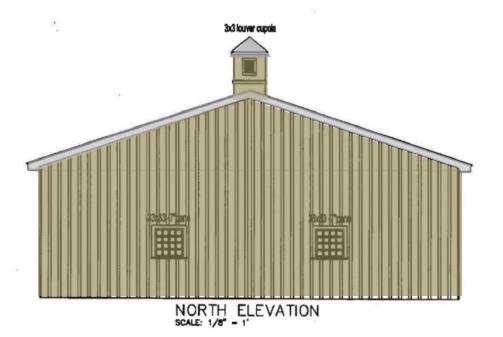
1. ALL MATERIALS SHALL MATCH EXISTING STRUCTURES. 2. OPPOSITE ELEVATIONS SIMILAR.

RESTROOM PLAN STUDY
1/8"=1'0"
3,775 sf

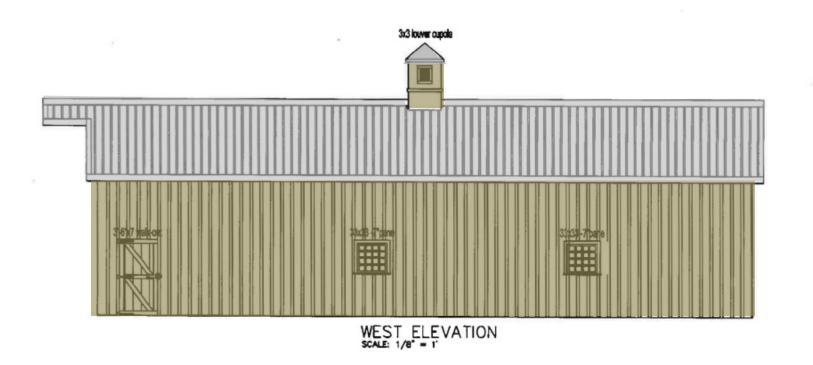


NEWCASTLE

68787 ΝE


WAYNE,

BARN


JOHN WORTMAN NEWCASTLE 68787 ST 1ST WAYNE, NE 116 WEST BARN Page

NOTE: THIS BLUEPRINT HAS BEEN DRAFTED FOR MATERIAL ESTIMATE PURPOSES ONLY.

JOHN WORTMAN NEWCASTLE 68787 116 WEST 1ST ST Ä WAYNE, Page

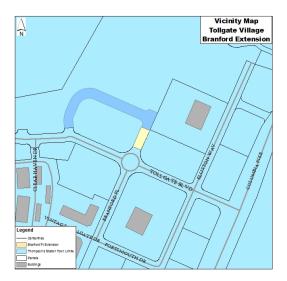
NOTE: THIS BLUEPRINT HAS BEEN DRAFTED FOR MATERIAL ESTIMATE PURPOSES ONLY.

MAYNE, NE 68787 JOHN WORTMAN

DRAWN BY: MIKE MCMANIGAL

BARN

Page


NOTE: THIS BLUEPRINT HAS BEEN ORAFTED FOR MATERIAL ESTIMATE

Thompson's Station Planning Commission Staff Report –Item 5 (FP 2018-019) October 25, 2018

Final plat for the dedication of an extension of Branford Place.

PROJECT DESCRIPTION

A request to approve the extension of Branford Place within Tollgate Village.

BACKGROUND

On January 23, 2018, the Planning Commission approved a site plan for the development of two commercial and one mixed use buildings located at the corner of Tollgate Boulevard and Elliston Place. As a contingency of approval, the project site was to be subdivided and the dedication for the extension of Branford Place be recorded. A plat for the lot was recorded on July 6, 2018 however, this plat did not include the roadway extension of Branford Place.

ANALYSIS

Final Plat

The purpose of the final plat is to provide a legal instrument where the transfer of ownership of lots is allowed and shall constitute a way where streets and other infrastructure can be accepted (LDO Section 5.2.7).

The project is located within Tollgate Village, is zoned Neighborhood Commercial and consists of the dedication of approximately 143 feet. The proposed road, Branford Place with a 60 foot right-of-way is an extension of an existing roadway which will serve the site and future land uses.

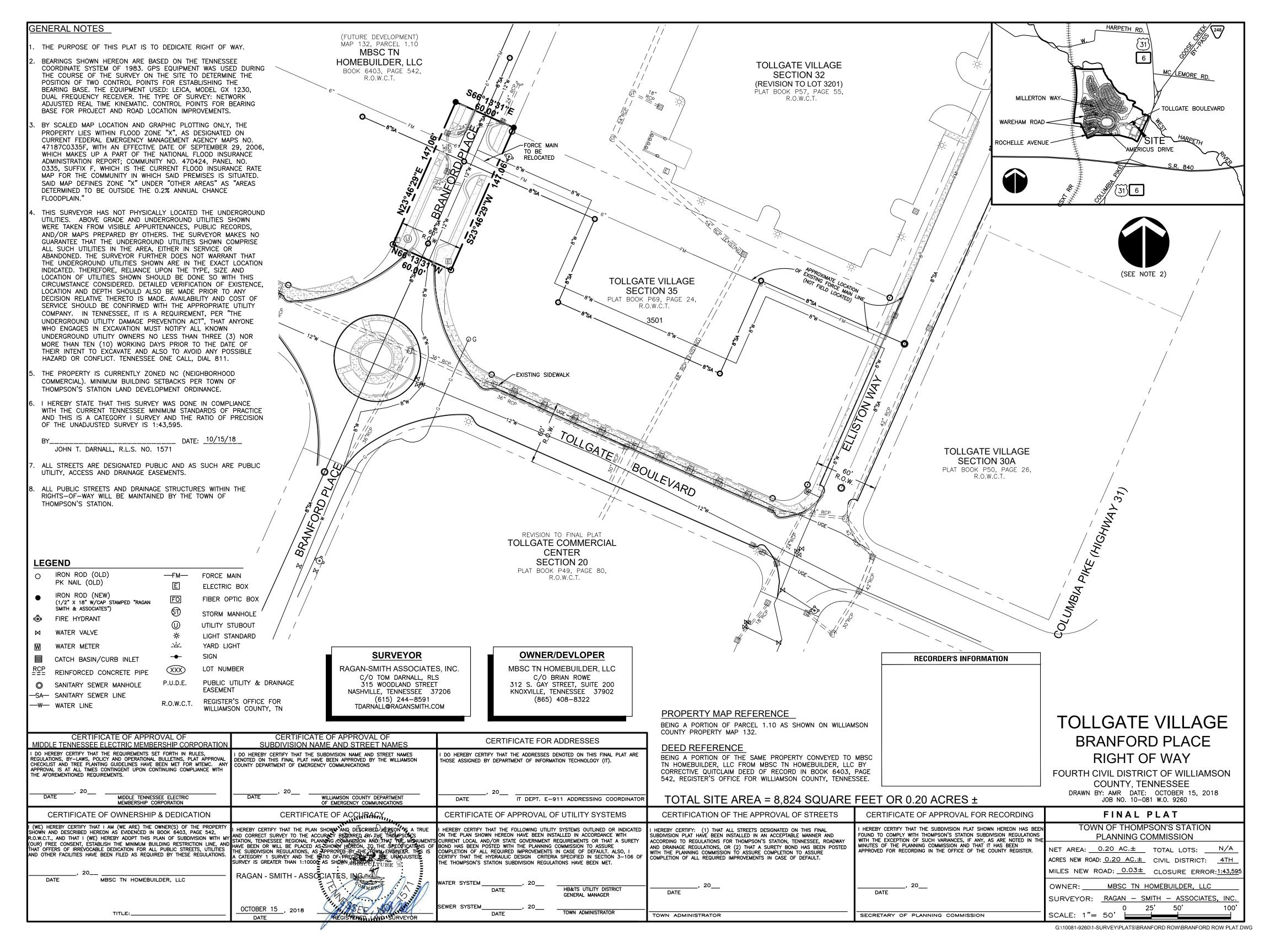
Open Space

The open space required for the Tollgate Village subdivision is 120 acres of which all is recorded.

Sureties

Sureties are required prior to the recordation of any final plat to ensure that all necessary improvements are guaranteed to be installed per approved construction plans. Construction plans are not submitted on this section of roadway at this time and will be subject to review prior to the issuance of a grading permit for the road. The road is also currently used for construction; therefore the Town Engineer recommends that the roads, drainage and erosion control surety should be set at

\$97,700. In addition there is a future force main and gravity line also within the project area, therefore, the Town Engineer recommends that the sewer surety be set at \$12,000.


RECOMMENDATION

Staff recommends approval of the final plat to extend Branford Place with the following contingency:

- 1. Prior to the approval of construction plans, all applicable codes and regulations shall be addressed to the satisfaction of the Town Engineer. Any corrections or issues with the drawings related to regulations may be subject to further Planning Commission review.
- 2. Prior to recordation of the final plat, a surety shall be submitted to the Town in the amount of \$97,700 for roadways, drainage and erosion control with automatic renewal.
- 3. Prior to recordation of the final plat, a surety shall be submitted to the Town in the amount of \$12,000 for sewer with automatic renewal.

ATTACHMENT

Preliminary Plat

Phone: (615) 794-4333 Fax: (615) 794-3313 www.thompsons-station.com

1550 Thompson's Station Road W. P.O. Box 100 Thompson's Station, TN 37179

M EMO

DATE: October 25, 2018

TO: Planning Commission

FROM: Wendy Deats, AICP

Town Planner

SUBJECT: Item 6 - Request to waive the requirement for a 20-foot easement as required in Section

3.10.1 of Article 3 – Subdivision Regulations within the Land Development Ordinance

(FP 2018-018).

<u>Request</u>

WES Engineers and Surveyors is requesting permission from the Town of Thompsons's Station Planning Commission to waive the standard which requires a 20-foot easement for drainage. The Town's LDO Article 3, Section 3.10.1 states "Each lot shall have necessary drainage easement. Easements at least 20 feet in width shall be required for pipes with diameters of 60 inches of less or as required by the Town Engineer."

Subdivision Regulations

Article 5, Section 5.5.2 permits the Planning Commission to grant a deviation from a subdivision regulation if the Commission finds that "extraordinary hardships or practical difficulties may result from strict compliance with the subdivision regulations." The deviation should not have the "effect of mollifying the general intent and purpose of these regulations" and the Commission concludes that "the purposed of these regulations may be specifically served to an equal or greater extent by an alternative proposal, condition or circumstance." Approval of the deviation may be subject to conditions as the Planning Commission determines appropriate.

Analysis

Willowbranch Partners has started construction of two houses (Lot 1158 and Lot 1159) in The Fields of Canterbury which encroach into the 20-foot drainage easement. The house on lot 1158 encroaches by .08 feet and the house on lot 1159 encroaches by 1.08 feet. WES has provided a letter stating the there is an "existing 18-inch reinforced concrete pipe that extends to a catch basin on Cloister Lane between Lots 1158 and 1159" and that the easement of 20 feet in width was "overlooked" on the plat when the house plans were submitted. WES noticed the error while preparing other plans and contacted the developer however the foundations were complete. The builder, Willowbranch Partners reached out to Town staff and we informed them that a request to the Planning Commission would be necessary to deviate from subdivision regulations. WES is requesting to reduce to easement to 17 feet with 8.5 feet on each lot.

Staff Comments

The intent of the code is to establish a minimum easement area to accommodate drainage infrastructure. The encroachment is minimal and doesn't appear to have a negative impact on the intent of the code.

Phone: (615) 794-4333 Fax: (615) 794-3313 www.thompsons-station.com

1550 Thompson's Station Road W. P.O. Box 100 Thompson's Station, TN 37179

No encroachment into the required setback or any other easement has or will occur as a result. Therefore, Staff does not have substantial concerns with the request.

Recommendation

Staff recommends that Planning Commission to evaluate the information and make a decision approving the revision to the final plat with a request to deviate from the requirement for easement width and permit a 17 foot wide drainage easement.

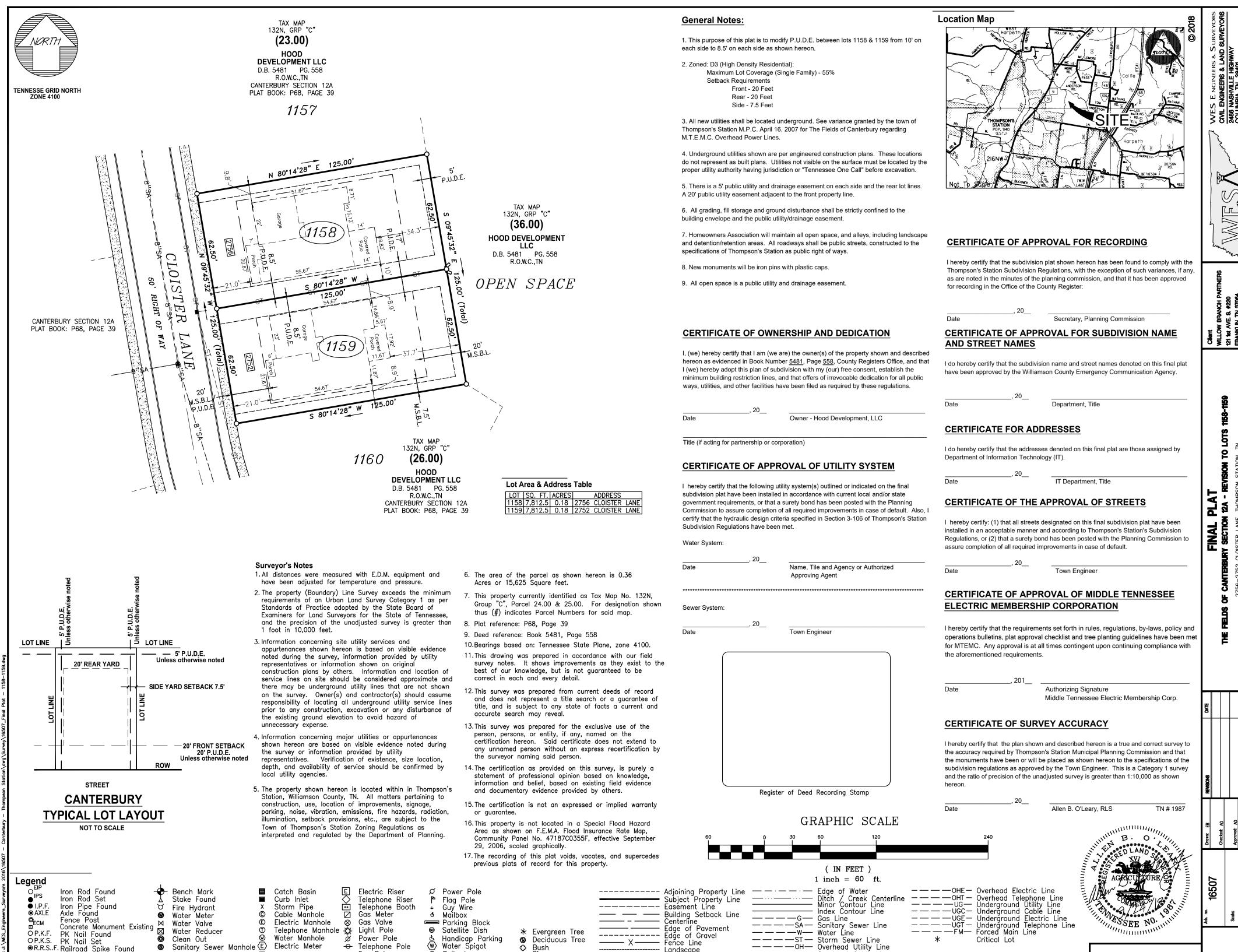
Attachments
Final Plat
WES Justification Letter

October 12, 2018

Wendy Deats, AICP Town Planner Town of Thompson's Station Planning Commission P.O. Box 100 Thompson's Station, TN 37179

RE: Canterbury Lot 1158 and 1159 Revision Plat

Mrs. Deats and Planning Commission Members:


The proposed plat for the revisions to Lots 1158 and 1159 Canterbury, Section 12B is being submitted for approval of a reduced public utilities and drainage easement on an existing 18" reinforced concrete pipe that extends from a catch basin on Cloister Lane between Lots 1158 & 1159 to the rear of the lots. When preparing the site plan for these lots, the 20-ft public utility and drainage easement that was shown on the final plat was overlooked and the plans were submitted for building permits. While we were preparing site plans (plot plans) for other lots along the road, this error was discovered. We notified the developer but, unfortunately, the foundation and block for 1159 had been completed and remains at that point currently.

Our request is to reduce the easement to 8.5-ft each side of the shared property line for a symmetrical easement totaling 17-feet wide. The typical side yard setbacks on the lots are 7.5-ft and the building does NOT encroach that setback on any side. All the drainage components are centered on the lot line and will remain within the proposed drainage easement. All other standard public utility and drainage easements on the lot (20-ft on the front, 5-ft on the side yard and rear yard) remain unchanged. With this request there is still 18.9-ft of building separation, which is over the requirement of 15-ft with the typical building setbacks. The builder has located all HVAC equipment on the opposite side of both homes to keep this proposed easement free of obstructions. With the proposed 17-ft easement, the existing drainage structures would be easily accessible by any heavy equipment that might be required for maintenance. Please feel free to contact my office with any questions you may have.

Sincerely,

WES Engineers & Surveyors

Gerald Vick, PE Principal RECEIVED OCT 15 2018

W Water Spigot

Bollard

Bush Sign

-- Landscape

Woods / Tree line

---OHC-Overhead Cable Line

Sanitary Sewer Manhole 🗈

Storm Sewer Manhole □ Cable Riser

●R.R.S..F. Railroad Spike Found

Electric Meter

Telephone Pole

-O- Guy Pole